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ABSTRACT

To address the impact of photovoltaic (PV) policies on the expansion of offshore PV
installed capacity, this study proposes a prediction model based on system dynamics
(SD) theory. This model quantifies policy types and practical situations, and the
scoring results reflect the policy's influence effectiveness. The Grey Wolf Optimizer
(GWO) is employed to optimize the influence coefficients of supportive, guiding, and
developmental policy effectiveness within the model, thereby improving the model's
precision and accuracy. First, a system dynamics model was constructed to analyze
the relationships among PV power generation costs, revenues, installation
willingness, and installed capacity. Then, the policy implementation effect was
integrated into the SD model in the form of policy effectiveness, and a policy
effectiveness evaluation system was established. Finally, simulation prediction and
analysis were conducted. Predicted values of offshore PV installed capacity in Jiangsu
Province from 2021 to 2024 were compared with actual data to verify the
effectiveness of the model. Subsequently, offshore PV installed capacity and
investment costs from 2025 to 2030 were simulated and analyzed. Case study results
indicate that the predictions of the proposed model are consistent with industry
development trends and provide valuable references.
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1. Introduction

With the ongoing transformation of the energy structure, offshore PV has emerged as a key research area due
to its dual advantages of utilizing marine space resources and smoothing energy fluctuations [1-3]. In this context,
evaluating the actual impact of PV policies on the offshore PV industry and accurately predicting changes in
installed capacity can provide valuable insights for power grid operations and economic planning.

In recent years, numerous domestic and international scholars have researched and analyzed PV installed
capacity forecasting. Reference [4] proposed an incentive policy forecasting model based on PV industry profits
and costs, along with a user decision-making model for grid-connected PV methods. This served as the foundation
for a system dynamics model of distributed PV installed capacity that incorporates the evolution of incentive
policies. Reference [5] developed an evaluation model based on three dimensions: renewable energy policy
intensity, policy objectives, and policy measures. The results indicate that the number of renewable energy policy
documents issued in China generally follows the trend of overall policy effectiveness,, while average policy
effectiveness remains relatively stable. In terms of trends, policy measures received higher average scores,
suggesting that efforts should focus on enhancing the average effectiveness of policy intensity and objectives.
Reference [6] collected PV industrial policy documents from 2010 to 2020, established a quantitative evaluation
model, calculated annual policy effectiveness, and evaluated the implementation effects of different policy
instruments. The results show that the number of PV industrial policies is generally consistent with the overall
trend of policy effectiveness, albeit with significant fluctuations, while the average annual effectiveness varies less.
Thus, it was found that, compared to environmental policies, the implementation effects of supply-side and
demand-side policies are less effective.

The above studies evolve and predict the impact of China's PV policies from perspectives such as investment
costs, policy intensity, and subsidies incentives, but they do not deeply investigate the influence of PV policies.
Currently, the mainstream approach among domestic and foreign scholars for analyzing policy impacts on
industry development is to quantify policy effects as policy effectiveness for analysis and evaluation. This paper
integrates a system dynamics model, introduces policy effectiveness into the system dynamics model, and
incorporates policy implementation effects into the causal feedback loop, thereby reducing prediction error [7-9].

Due to the difficulty in determining the influence coefficients of different types of policy effectiveness, random
assignment can reduce accuracy. Therefore, swarm intelligence algorithms commonly used for optimization are
particularly important. The GWO is an intelligent optimization algorithm inspired by the hunting behavior of grey
wolf packs, proposed by Mirjalili et al. in 2014. This algorithm mimics the hierarchy and hunting mechanism of
grey wolf society and achieves adaptive adjustment of core parameters through simply control of the number of
wolves and the maximum number of iterations [10-14]. Using the root mean square error between the predicted
and actual values as the objective function, the parameter set with the lowest fitness value is obtained, yielding
the influence coefficients for supporting, guiding, and development-oriented policies.

Based on the aforementioned research, this paper proposes a system dynamics-based forecasting model for
offshore PV installed capacity that considers the impact of different policies. Policy texts related to PV in China
from 2019 to 2024 are transformed into policy effectiveness and introduced into the system dynamics forecasting
model to analyze the impact of different policy types on offshore PV installed capacity. The grey wolf algorithm is
then applied to optimize and calculate the influence coefficients of different policies, enabling the prediction of
China's offshore PV installed capacity from 2021 to 2030. This provides a reference for subsequent power grid
operations and economic planning.

The innovation of this research lies in transforming "policy effectiveness" from a static "switch variable" into a
quantifiable, feedback-enabled endogenous dynamic variable, systematically embedding it into the SD framework,
thereby constructing an integrated simulation model that aligns with real policy operation logic. The photovoltaic
policy system was disaggregated into three major dimensions: supply-side, demand-side, and environmental.
Static policy assumptions were dynamized, significantly enhancing the model's explanatory and predictive power
for policy evolution. Building upon this, the study further introduces the GWO algorithm, using historical newly
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added installed capacity curves as the training target, to optimize the effectiveness parameters for supply,
demand, and environmental policies, thereby improving the accuracy and speed of the capacity prediction
process. This coupled framework demonstrates the impact of different policy types on installed capacity, providing
verifiable dimensions and a basis for renewable energy policies.

2. System Dynamics Modeling

System dynamics is suitable for complex networks influenced by multiple parameters, possesses strong multi-
information processing capabilities, and is applicable to dynamic behavior analysis of nonlinear relationships in
networks [15-19]. This paper takes offshore PV installed capacity as the research object, comprehensively
considers policy factors that directly affect the total revenue from offshore PV power sales such as per-kWh
subsidies, sales electricity price, and benchmark on-grid electricity price and constructs a system dynamics
prediction model for offshore PV installed capacity. Causal feedback relationships between different variables are
represented by arrows, indicating that an increase or decrease in one variable causes changes in associated
variables. The established system dynamics simulation model is shown in Fig. (1).
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Figure 1: Policy and offshore PV development system dynamics model.

2.1. Model Building Analysis

The model constructed in this section sets the cumulative installed capacity of offshore PV as the primary state
variable, with the corresponding flow variable being the annual newly installed capacity [20-25]. The remaining
components, such as return on investment, willingness to install offshore PV, and total costs of PV power
generation, are auxiliary variables. The influence mechanism between variables is as follows.

(1) The cumulative installed capacity of offshore PV, statistically measured at the end of each year, is taken as
the cumulative amount, with the flow being the newly installed offshore PV capacity in the target year. The newly
installed capacity in the target year is mainly affected by two factors: the newly installed capacity in the previous
year and the willingness to install offshore PV in the target year. Therefore, determining the newly installed
capacity in a given year requires calculating the actual installation willingness for offshore PV in that year.

(2) The willingness to install offshore PV power generation systems depends on the actual economic benefits of
offshore PV projects. When the return on investment meets or exceeds expectations i.e., the higher the actual
return on investment and the shorter the investment recovery period, the stronger the investment enthusiasm,
and the greater the newly installed capacity of offshore PVs in that year.
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(3) Offshore PV can participate in electricity market transactions through models such as "full on-grid" to sell
electricity and can also obtain profits from national per-kWh subsidies in addition to electricity price revenue.
These two sources collectively constitute the annual return on offshore PV investment. Power generation revenue
is directly related to factors such as per-kWh subsidies, sales electricity prices, and on-grid electricity price, which
are often adjusted based on government or grid documents, causing revenue fluctuations that affect project
investment willingness.

(4) Typically, investment costs include initial investment cost (i.e., installation cost), operating costs, and loan
costs. According to the learning effect of the offshore PV industry, installation cost usually decreases gradually as
the cumulative installed capacity of offshore PV expands. Thus, an increase in offshore PV installed capacity leads
to changes in investment costs, forming a feedback loop between installed capacity and return on investment.

2.2. Specific Modeling of Each Module

The system dynamics model built in this study is divided into four modules: revenue module, costs module,
installation willingness module, and installed capacity module [26-32]. The specific modeling processes for each
module are as follows.

2.2.1. Revenue Module

The revenue module in the system dynamics model primarily consists of power generation revenue. The
revenue obtained by offshore PV through "full grid connection" is expressed as:

G(t)=Pgh'Tbm+Pgh'St M

where G(t) is the power generation revenue from full on-grid access in year t; T, is the benchmark on-grid
electricity price for PV power; Py, is the annual average power generation of offshore PV, and S, is the per-kWh
subsidy from the renewable energy development fund.

2.2.2. Cost Module

The total cost of investing in offshore PV power generation systems typically includes initial investment cost,
loan cost, and operating cost, as follows:

CH (t) = inv(t) + Cop(t) + Ccr(t) (2)

where Cy(t) is the total offshore PV power generation cost in year t; C,(t), C,,(t), and C.(t) are the initial
investment cost, operating cost, and loan cost in year t, respectively.

The initial investment cost covers equipment purchase costs (e.g., PV modules and grid-connected inverters),
system design costs, installation costs, and other related expenses. The initial investment cost of offshore PV
systems decreases as the PV industry expands. The learning curve is often used to describe this phenomenon.
The equation is as follows:

A
Cinv(t) = CinvO [%] (3)
R =1-2% (4)

where C;,,(t) is the initial investment cost of the selected base year; I(t) is the cumulative installed capacity of
offshore PV in year t; I, is the cumulative installed capacity in the base year; 1 is the elasticity coefficient, and R, is
the learning rate, indicating that when the installed capacity doubles, the initial investment cost reduces to 1 —
R;of the previous value.

Operating costs are estimated as a proportion of the initial investment cost, with the operating cost rate set as
Fop:
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Cop(t) = inv(t) " Top (5)

Assuming the loan proportion (%) of the initial investment cost is P1, and the bank interest rate is y, the loan
cost is:

Ccr(t) = Cinv(t) : Pl Y (6)

2.2.3. Installation Intention Module

Research indicates that the ratio of actual to expected return on investment directly affects investment
decisions for offshore PV projects. The installation intention is expressed as:

wi(t) = 29 (7)

Rq

where W;(t) is the installation intention in year t; R(t) is the actual return on investment in year t; and R, is the
expected return on investment.

The return on investment is defined as the ratio of annual income to the total investment costs:

_6®
Ry = =5 X 100% (8)

2.2.4. Installed Capacity Module

The annual cumulative installed capacity I1(t) of offshore PV is the sum of the previous year's cumulative
installed capacity I(t — 1) and the newly installed capacityl, (t) of that year. The newly installed capacity in a given
year is proportional to the product of the installation intention and the newly installed capacity of the previous
year:

I®) =Wi(®) - L,(t =1 +I(t-1) 9)

3. policy Effectiveness Evaluation System

To comprehensively consider the multi-level impacts of policies on offshore PV development and improve
prediction accuracy, this paper introduces the policy implementation effects as policy effectiveness into the
system dynamics model and applies the Grey Wolf Optimizer algorithm for optimization.

3.1. Policy Effectiveness Evaluation Module

This paper evaluates the implementation effect of China's PV policies from three perspectives: policy intensity,
policy objectives, and policy measures, based on established domestic and international policy effectiveness
evaluation systems. The evaluation criteria are shown in Table 1 [33-39].

The three types are classified as follows:

1. Supporting policies: The government promotes the high-quality development of the PV industry through
technical support, PV poverty alleviation, and financial subsidies.

2. Guiding policies: The government uses policy planning, project pilots and other measures to drive PV
industry development through planning coordination, guidance, and other methods.

3. Development policies: The government focuses on creating a vigorous development environment and
market order through legal supervision, tax exemption, specification formulation, and other methods.

After formulating the quantization assessment method for PV policies, the annual policy effectiveness of each
type is calculated as follows:
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Table 1: Policy document quantification table.

. uantitative s
Policy Text Q Quantitative Standard
Score

5 Statutes promulgated by the National People's Congress and its Standing Committee
4 Regulations promulgated by the State Council and various ministries and commissions

Policy Impact 3 Interim regulations promulgated by the State Council, and regulations, provisions,

yimp and decisions promulgated by various ministries and commissions
2 Plans, outlines, and interim provisions of various ministries and commissions
1 Notices and announcements promulgated by various ministries and commissions
5 Policy objectives are clear and quantifiable, and clear standards are proposed
Polic . _— . . .
olcy 3 Policy objectives are relatively specific, but lack quantifiable standards
Objective
1 The policy's expectations and visions were only expressed from a macro perspective
5 The measure system is complete, and entities bearing liability and enforcement mechanisms are clarified
4 Detailed implementation measures are proposed for specific PV projects, specifying content,
arrangements, etc., for a certain period
Polic . . . . .
Measu)r/es 3 Basic implementation measures and relevant policy observations are proposed regarding PVs,
but overall, macro-level requirements are proposed

2 The policy involves PVs, and some basic enforcement content is proposed
1 Merely PVs are mentioned, and specific implementation means are not proposed

Pes(0) = X%, (g + m) p; (10)
Pep(t) = X2, (g: + m) p; (11)
Pep(t) = X4, (g9: + m) oy (12)

where t is the year of policy implementation; Pgs(t), Pgp(t), and Pgg(t) are the overall policy effectiveness of
support, guidance, and development policies in year t; ng, ng, and n, are the total quantity of support, guidance,
and development policies in year t; g;,m;, and p;are the policy destination score, policy measure score, and policy
strength score of the i-th PV policy, respectively.

After introducing the policy effectiveness module, the cumulative installed offshore PV capacity per year can be
expressed based on equation (9) as:

I(t) = L(O[1 +nsPes(t — Is) + g Pep(t — lg) 1 Pep(t — )] +1(t — 1) (13)

where 74, ngand neare the influence coefficients of supporting, guiding, and development policy effects on the
annual newly installed capacity, respectively; and L, l4, and [, are the lag periods of the supporting, guiding, and
development policy effects, respectively.

For policy effectiveness assessment values, considering policy lag effects, monetary policy has a long
implementation lag, and fiscal policy has a long decision-making lag. While developed regions, despite smooth
transmission, have long cycles, emerging markets may experience faster but more unstable effects due to
immature institutions, or may fail entirely. Therefore, policies related to the photovoltaic industry, promulgated by
the State Council and various ministries and commissions from 2019 to 2024, were retrieved from websites for
effectiveness assessment. Policy effects from 2025 to 2030 were estimated based on 2019 to 2024 data. Given the
chaotic nature of annual policy effects, the ARMA time series model integrating trending and mean-regression
theories was used for forecasting. The statistical results of policy effects from 2019 to 2030 are shown in Fig. (2).

22



Predicting Offshore PV Capacity via System Dynamics and Policy Factors Wang et al.

300 —
O Supportich Guiding\:l Developmental =

250 —

200 -

150 | m

Policy effectiveness

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Year

Figure 2: Policy effectiveness statistics, 2019-2030.
3.2. Grey Wolf Optimizer

Since the influence coefficients of supportive, guiding, and developmental policies on the annual newly
installed capacity of offshore PV power are difficult to determine, the Grey Wolf Optimizer algorithm is used to
optimize these parameters to improve forecasting accuracy and effectiveness [40-46].

GWO was proposed by Mirijalili et al. in 2014 as a swarm intelligence optimization algorithm based on grey
wolves hunting behavior. The GWO algorithm has attracted attention due to its simple structure and global
convergence advantages [47-50]. During hunting, grey wolves update their positions by tracking the top three
wolves. In a D-dimensional space, a population of N grey wolves is represented as X = (X1, X2, ..., Xn), and the vector
position of the i-th grey wolf is Xj = [Xi, Xiz, ..., Xio]". After solving the fitness value for each wolf and determining
their fitness and positions, candidate wolves adjust their mobility vector according to:

X1 =Xe — A1 (Dy)
X, =Xg — A, - (Dp) (14)
X3 = Xs — Az - (Ds)

Ap=2ar;—a k=123 (15)

where Dq, Dg, and Ds represent the distances of gray wolf Xj from the top three wolves , X3, X, ..., Xz respectively,
represent the mobility vectors toward X;, a is the convergence factor, and rq is a random number in [0, 1].

The GWO algorithm is improved by adjusting the self-adapting value of the parameter a and updating the
candidate wolf's position using a weighted sum of the top three wolves' positions. The candidate wolf updates its
fitness and positioning via Equation (19) to enhance local and global convergence:

W, = 2A1 * Iy, W, = 2A2 * Iy, W3 = 2A3 ) (1 6)
a(t) — 1-(iter/itermax (,I 7)

1—u-(iter/itermax
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X(t + 1) — wq-X1+wy-Xo+w3-X3 (18)
wWi+wy+w3
where r,is @ random number in [0, 1]; iteris the current iteration number; iter,,,iS the maximum iteration
number; u is a nonlinear coefficient in (0, 3).

The GWO algorithm flow is shown in Fig. (3), where the objective function is the root mean squared error
(RMSE) between predicted and actual values. RMSEbest, RMSEmin, and RMSEi are the global minimum RMSE,
current minimum RMSE, and RMSE of the i-th iteration, respectively. By adjusting model parameters (or algorithm
parameters), RMSE is minimized to bring predicted values closer to actual values.

Initialize the parameter values of grey wolf
individuals, iteration number i, and
maximum iteration number lter

v

Compute the root mean square of all
parameters, select the Minimal root mean
square, RMSEbest=RMSEmi

i=2

Update the size of the convergence factor [«

v

Update the position of grey wolf individuals

RMSEi<RM
SEbest?

RMSEbest=RMS
Ei

N [«
N_ | Move to the
next
iteration, i=i+1
Y
Output the forecasting outcome

(o )

Figure 3: Flowchart of system dynamics model solution based on Grey Wolf Optimization Algorithm.

The influence coefficients of supportive, guiding, and developmental Policy effectiveness are optimized using
GWO. The resulting coefficients are 0.00192, 0.00325, and -0.00164, respectively. The convergence curve is shown
in Fig. (4).

From the figure, it can be observed that after 50 iterations, the fitness value gradually stabilizes, and further
increasing the number of iterations offers only limited improvements in solution precision. Considering the trade-
off between computational efficiency and solution accuracy, the maximum number of iterations is ultimately set
to 50 in this study. Additionally, the population size is set to 30, a size that ensures the algorithm's convergence
performance while effectively maintaining diversity.
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Figure 4: GWO Algorithm Convergence Process.

4. Simulation Analysis
4.1. Parameter Setting

This study uses Vensim PLE software to develop an SD-based prediction model for offshore PV installed
capacity and investment costs. Data from the National Energy Administration (NEA) and the GWO method are
used to calibrate and optimize simulation parameters. The model predicts development trends of offshore PV
installed capacity and initial investment cost in Jiangsu Province, China from 2021 to 2030.

According to the National Development and Reform Commission (NDRC) policy issued in June 2021, for Jiangsu
Province in 2021(the initial simulation year), new centralized PV power stations and industrial/commercial
distributed PV projects filed since 2021 adopt grid parity, with on-grid electricity prices set according to the local
coal-fired power benchmark price. Projects completed before 2021 follow the original electricity price policy.

For offshore PV benchmark projects from 2021 onward, on-grid electricity price changes are simulated using
the "coal-fired power benchmark price + floating adjustment" method. As of 2021, no offshore PV feed-in tariff
subsidies had been introduced. For reference, the NDRC has clarified a subsidy of CNY 0.42/kWh for distributed
PV; data for 2022-2024 were obtained from relevant documents.

This study collected data on annual effective utilization hours of PV power in nearshore cities of Jiangsu
Province, calculated the average annual power generation per unit installed capacity, and set the 2021 installation
cost as the base year initial investment cost (2021). Based on market research, the procurement cost of offshore
PV equipment in Jiangsu in 2021 was approximately CNY 3/W. Considering installation and design costs, the initial
investment cost was determined to be CNY 6.2/W.

Based on current market operations and relevant research, the loan-to-investment ratio (%) for PV power
generation projects is 35%-70%; bank loan interest rates are 3.5%-6.5%; and the expected return on investment
(ROI) is generally 5%-15%. For these variables, the GWO algorithm is used for optimization.

The initial parameter settings are shown in Table 2.

4.2. Simulation Result Analysis

With 2021 as the initial year, the proposed model is used to forecast and analyze the development trends of
cumulative installed capacity and initial investment cost of offshore PV in Jiangsu Province from 2021 to 2030.
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Table 2: Initial parameter settings.

Model Parameters Initial Value Model Parameters Initial Value
T/Yuan-(kW-h)~’ 0.5283 Cinvol Yuan-kW™! 6200
S/Yuan-(kW-h)-! 0.42 R/ % 15

Taes/Yuan-(kW-h)-! 0.391 Tom/Yuan-(kW-h) ! 0.391

4.2.1. Model Validity Verification

The proposed model is used for backtesting of offshore PV installed capacity in Jiangsu Province from 2021 to
2024. The backtesting results are shown in Fig. (5). By comparing the predicted values with the actual values, it can
be observed that the average percentage error between the predicted cumulative installed capacity (considering
policy effectiveness) and the actual cumulative installed capacity is 5%, confirming the model's prediction
accuracy.

— 2600 1

= — ® — Forecasted Installed Capacity

— L Actual Installed Capacity

=

£ 2080 |-

= p

<

= v

= /

£ 1560 | -

=]

=

]

= &

< 1040 |

=

=

S

£ 520 " |

= o

=]

F _—

= p I I I
2021 2022 2023 2024

Year

Figure 5: Backtesting of cumulative installed capacity of offshore PV.

4.2.2. Prediction of Future Data

After validating the model|, it is used to predict and analyze the development trends of cumulative installed
capacity and initial investment cost of offshore PV in Jiangsu Province from 2025 to 2030. The results are shown in
Fig. (6).

B orrshore PV installed capacity u Initial investment cost
.\

Installed capacity forecast value (MW)
Initial investment cost (Yuan/W)

0
2024 2025 2026 2027 2028 2029 2030 2031
Year

Figure 6: Development trend of cumulative installed capacity and cost of offshore PV.
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As shown, Jiangsu Province has been steadily increased support for renewable energy, and offshore PV
technology has advanced. Reduced costs of offshore PV modules offset the revenue gap from phased subsidy
reductions, maintaining a high investment return rate and driving steady growth in installed capacity. The
cumulative offshore PV installed capacity in Jiangsu Province is estimated to reach 24,557 MW by 2030, while the
initial investment cost decreases to 2.44 Yuan/W.

5. Conclusion

This paper proposes a system dynamics prediction model that considers the impact of PV policy effectiveness
on offshore PV installed capacity growth, with a focus on PV policies. The model predicts and analyzes China's
cumulative offshore PV installed capacity from 2021 to 2030 and the initial investment cost from 2025 to 2030,
and draws the following conclusions and future policy development recommendations:

1. Incorporating the effectiveness of different policy types into the system dynamics causal chain significantly
improved prediction accuracy, reflected policy impacts, and brought predicted values closer to actual
values. Using the policy-influenced System Dynamics Model, the development trends of cumulative
installed capacity and initial investment cost from 2025 to 2030 were predicted.1. The results indicate that,
with increasing policy support and technological advancements, installed capacity has gradually increased
while investment costs have decreased. By 2030, cumulative installed capacity is projected to reach 24,557
MW, and the initial investment cost will decrease to 2.44 yuan/w.

2. Due to the difficulty in determining the influence coefficients of supportive, guiding, and developmental
policies, the Grey Wolf Optimizer was employed for parameter optimization, which effectively improved
prediction speed and accuracy. Therefore, policies need to clearly define the investment entities and
construction standards for offshore PV, lower the grid connection threshold for projects, and ensure the
effective implementation of policies.

3. Based on the results of policy impact effectiveness, policies that have a positive impact on the growth of
offshore PV installed capacity should be prioritized for implementation and supplemented with
corresponding subsidies. Simultaneously, the implementation effectiveness of policies is monitored in real
time. In cases where the actual effects deviate from model predictions, the intensity and direction of
policies are adjusted promptly, and policy support for these weak links is specifically strengthened to
ensure comprehensive coverage of policy effects.

4. The proposed model can quantitatively assess the dynamic impact of key influencing factors on offshore
photovoltaic installed capacity, reveal synergistic or substitutive relationships between different policy
instruments, and facilitate the consideration of synergistic effects among different policy types. For
example, model training has revealed that the combination of subsidy policies and tax break policies has a
greater promotional effect on installed capacity growth than implementing subsidy policies alone.
Therefore, implementers can better utilize model results for practical guidance.
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