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ABSTRACT

This paper discusses the dynamic event-triggered H. state estimation issue for
memristive neural networks with time-delay under variance constraints. The dynamic
event-triggered mechanism is incorporated into the sensor-to-estimator to reduce
resource consumption in the communication channel. The objective is to design the
time-varying state estimator such that, in the presence of the dynamic event-triggered
mechanism and time-delay, new sufficient criteria are derived to ensure the desired
H- performance and the boundedness of estimation error variance. Furthermore, a
novel non-augmented H. state estimation algorithm is proposed under variance
constraint by using the stochastic analysis techniques. Finally, a simulation example is
used to illustrate the effectiveness of the proposed H. state estimation algorithm.
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1. Introduction

Over the past years, due to the important applications of neural networks (NNs) in practical systems such as
optimization problems, pattern recognition and associative memory [1-3], many scholars have begun to pay
attention to the research on related problems of NNs. With the deepening of research, the concept of memristor
was proposed in [4], and researchers from Hewlett-Packard have also confirmed the existence of memristor in [5].
Memristor is the fourth new passive nano-information device following three basic circuit components of resistance,
capacitance and inductance [6, 7]. Different from the existing devices, the memristor has the advantages of low
energy consumption, non-volatility, small size and so on [8-10]. Actually, the memristor is very similar to biological
synapses in both structure and function. Thus, more and more researchers use memristors to replace synapses in
artificial NNs. Among the existing research results, the state estimation (SE) issue has attracted much attention and
become an important research topic of memristive NNs (MNNSs) [11-14]. Generally, the state of neurons is not
completely measurable, we need to present an appropriate SE method to estimate the state of neurons [15-18]. For
example, a new finite-horizon H. SE scheme has been proposed in [19] for MNNs, where both the time-delay and
stochastic communication protocol have been taken into consideration, and a sufficient condition has been given
to ensure the H. performance index. However, it is worth noting that the research on the H.. SE problem for MNNs
remains limited and thus deserves further investigation.

Generally speaking, due to the fact that the circuit implementation of large-scale MNNs often consumes
substantial resources, the problem of resource saving has become a hot topic for MNNs [20-22]. It is noteworthy
that the dynamic event-triggered mechanism (DETM) can effectively save resources [23], which has a strong practical
background, but unfortunately, it has received limited attention due to its mathematical complexity. In addition,
most event-triggered mechanisms are static, that is, the threshold of the triggering condition is fixed (not adaptive
or dynamic) [24, 25]. Up to now, there are few results regarding the SE problem of MNNs under DETM [26, 27].
Different from the static event-triggered mechanism, the DETM can reduce the frequency of event triggering, so as
to avoid unnecessary data transmission and achieve satisfactory performance. For instance, in [27], the SE issue has
been solved for delayed MNNs under DETM, where a sufficient condition has been given to ensure the desired H.
performance requirement. Note that there are relatively few results regarding the variance-constrained H. SE
problem for MNNs under DETM. In [28], the DETM has been adopted and the recursive distributed filtering
algorithm has been proposed for discrete nonlinear systems. Based on the DETM in [28], this paper integrates the
DETM into the multi-index framework to investigate the SE problem for MNNs. Consequently, in contrast to existing
methods, sufficient criteria are derived to guarantee the desired H. performance and the error variance
boundedness (EVB), and the multi-index SE algorithm is further proposed for MNNs from wider application
viewpoint. As such, how to utilize DETM to coordinate massive data transmission between MNNs and a remote
estimator has important practical significance, which is also one of the motivations of our research.

Time-delay commonly occurs when signals are transmitted between neurons, mainly due to the limited
communication time between neurons and the switching speed of amplifiers. In the networked environments,
different types of time-delay issues have attracted increasing research attention because the existence of time-
delays leads to undesired oscillations or even instability [29-31]. Specifically, in [32], a new event-based extended
dissipative SE method has been proposed for memristor-based Markovian NNs with time-varying delays. In [33],
the H.. SE problem has been addressed for NNs with mixed time-varying delays, and a sufficient condition has been
derived to guarantee the desired H. performance requirement [34, 35]. It should be noted that the time-delay effect
may degrade the estimation performance. Recently, an H. SE method has been proposed in [36] for recurrent NNs
with time-varying delays, where sufficient conditions have been derived to guarantee the H.. performance index. In
addition, the SE method under variance constraints is capable of offering a more relaxed technical approach that
can characterize the allowable accuracy of the proposed H. state estimation algorithm. Up to now, novel H. SE
algorithms have been presented in [37] and [38] for time-varying systems under variance constraint. Motivated by
the above results, we attempt to address the H. variance-constrained SE problem for MNNs with time-delay under
DETM.

Summarizing the above discussions, the main aim is to propose a new H.. SE algorithm for MNNSs subject to time-
delay under DETM, which can guarantee two requirements including the H. performance index and the EVB. The
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key technical challenges we tackled are as follows: i) How to propose appropriate method to handle the effects of
activation function? ii) How to ensure the satisfactory estimation performance by utilizing the proper constraint? iii)
How to develop a finite-horizon approach to address the recursive SE problem for MNNs with time delays via DETM
under the framework of recursive performance requirement? The corresponding solutions are elaborated as
follows: 1) By resorting to the sector-bounded condition, the conditions with respect to the nonlinear activation
function are derived in Lemmas 1-2; 2) In the design of the state estimation algorithm, we simultaneously consider
two performance constraints, namely the H. performance and the EVB; 3) Sufficient criteria are established to verify
that the proposed H.. SE method via DETM meets the desired H. performance requirement and the EVB. Specifically,
both the disturbance attenuation capability and flexible estimation accuracy are guaranteed through the recursive
linear matrix inequalities (RLMIs) technique. The primary innovations are summarized below: i) the dynamic event-
triggered H. SE issue is investigated for MNNs subject to time-delay under variance constraint; ii) the DETM is
incorporated into the design of time-varying state estimator (TVSE) of MNNs for the purpose of saving energy; and
iii) the proposed H. SE algorithm under variance constraints exhibits time-varying characteristics via solving
recursive linear matrix inequalities (RLMIs), which is suitable for online applications.

Notations: The superscript T, E{.}, R",diag{...} and = stand for the transpose of the matrix, the mathematical
expectation, the r -dimensional Euclidean space, the block diagonal matrix and the ellipsis for term resulting from
symmetry, respectively. The full names and abbreviations are given as follows:

Table 1: Definitions of full names and abbreviations.

Full Name Abbreviation
Neural networks NNs
Memristive neural networks MNNs
Dynamic event-triggered mechanism DETM
State estimation SE
Estimation error EE
Time-varying state estimator TVSE
Error variance boundedness EVB
Recursive linear matrix inequalities RLMIs
Positive-definite real-value matrix PDRVM

2. Problem Formulation

In order to reduce unnecessary waste of computing resources, the DETM is adopted. As illustrated in Fig. (1), a
dynamic event-triggered H.. SE method is proposed for MNNs with variance constraint.

Memristive s ER

neural :> State

()
networks -

Figure 1: Dynamic event-triggered H~ SE for MNNs framework.
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In this paper, we consider the MNNs with time-delay described as follows:

Xs41 = A(xs)xs + Ar(xs)xs—‘r + B(xs)f(xs) + Csvys
Xs = ¢S!VS € {_T;_T+ 1,,0} (1)

where x; € R™ depicts the state vector of MNNs, A(x,) = diag,{a;(x;s)} stands for the state coefficient matrix, A, (x,)
denotes the delayed connection weight matrix, C; represents known real matrix with suitable dimensions, and B (x,)
depicts the connection weight matrix. ¢ denotes a given initial sequence, f(x,) stands for the nonlinear activation
function, and d is the time-delay. v,; denotes zero-mean white noise with covariance v, > 0.

The activation function f(-): R® » R™ obeys f(0) = 0 and satisfies the sector-bounded condition given as follows:
[f(@) = f(B) = Us(a =PI [f(@) = f(B) = U (@ = )] <0, Va,f €ER" (2)

where U; and U, depict known matrices, and U = U, — U, stands for the symmetric positive definite real value
matrix (PDRVM).

According to [39], the state-dependent functions a;(x;s), a;;.(x;s) and b;;(x; ) satisfy the following conditions:

n
1 1 1 . 1 ai; |xis| > Fi
() =7 + = | signy + —| = '
ai(xis) C; Lzl (Raij,‘[ Rbij) “EN TR, {dv [xis| < T

1

‘e . = SIgnU _ aij,‘l,'!|xi_5| > Fi
al].T(xl,S) - CiRgija B {dijﬂ., |xi,s| <T

= 1i

signy  (by. |xis| > T
by (xis) = ~ b
ij (xz,s) Cinij {bij, |xi,s| =L

where I; >0, |a;| <1, |a;]| <1, C; denotes the capacitor, R; stands for the parallel-resistor, Ry, and R,; are,
respectively, the delayed connection weight matrix and the connection weight matrix. d;; , & ., b;; and b;; are known
scalars. Additionally, the symbolic function satisfies the following condition

1, i#j

Denoting
a; = min{a;, a;},af = max{a;, a;}, ajj, = min{ @, 4; .}
a?-j'.r = max{ (,Z\ij'-r, di}"r}, bl; = mm{ bij' bij}! b;}- = max{ bij! bl]}
A* =diag {af'},A” = diag, {a; }, AT = {a{j Inxn

A7 = {ai_j,-r}nxn'B+ = {biJ;'}nxn' B™ = {bi;'}nxn

- +i4- + = _
then we have 4,(x,) € [A7,A}], A(x;) € [A~,A*] and B(x,) € [B~,B*]. By defining 4, £ Af;“f = (“w: “W) L AL
nxn

At+a™ . traT al+a; fras _ ptip- br+bo )
= dlag{alza1 ,azzaz,...,a"za"} and B & = (M> , the matrices A(x,), 4,(x;) and B(x,) are further
nxn

2 2
expressed by

A(xg) = A+ DA, A (xs) = A; + AA gy, B(xs) = B + AB (3)

+_a4— at—a— t_A- At—a- +_p- p+t_p-
where AA; € [—A ZA 4 ZA ] AAy; € [—ATZA’,%] and AB; € [—B ZB 2 23 ] Let Ay =X e ucel, Ay, =

Tierei ¥y sef and AB; = X7, e; v el . Here, e; € R™ stands for the column vector with the i -th element being 1
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~ . f_ar
and others being 0. Unknown scalars u;, ¥;;,s and v;; s satisfy |u;s| < @, |9ijs| < @i and |v;; 5| < by; with @; = %

1

at. _—ar - bt —b5 . )
Ajjr = %‘” and b;; = UT” Furthermore, the unknown parameter matrices AA,, AA,, and AB; can be written as

AAS = HFl,SNl' AAdT = HFZ,SNZ! ABS = HF3'SN3

where
H=[H, H, -+ HyH,=[e e - e, (i=12..,n)
n
Ny =[Ny Ny - A{zn]T,(l=1,2.3)
Nyg=len - ey die; eiyq - en] 3 B
Nziz[ail,rel Aizr€2 ain,‘ren],N3i=[bilel bj,e, - binen]
Fis = diag{F;y 5 Fias, ) Fins}, (1 = 1,2,3), Fy; 5 = diag{0, ...,0,u; 5@, 0, ...,0}
i-1 n—i

in,s = diag{lpil,sai_l?r' lpiz,sdi_z?r' HER] lpin,sdi_n%r}' F3L‘,s = diag{vil,sBi_llt viz,sEi_zlﬁ e vin,sEi;ll
with H and N, being known matrices. It is easy to verify that F, ; satisfies F{F,; < I.
The measurement output and controlled output are given as follows:

Ys = Dsxs + Esvy
Zg = Mgxg (4)

where y, € R™ stands for the measurement output, z; € R" stands for the controlled output, D, E; and M, are known
matrices with proper dimensions, and v, stands for zero-mean white noise with covariance V,; > 0. In what follows,
assume that x,, v,5 and v, are mutually independent.

To save resources, the dynamic event generator is designed between the sensor and the state estimator.
Moreover, the triggering instant sequence is denoted by 0 <t, <t; < - <t <-, where t;,, is defined as the
following rule

ties = min{s € [0,N]|s > t,, 21, + 0 — el'&; < 0} (5)

where ¢ > 0 and 6 > 0 are given scalars, g, = y; — Ysey Vst depicts the transmitted measurement at latest event time,
and n, depicts the internal dynamic variable obeying

Nes1 = Allg + 0 — €] & (6)
where 1 > 0 depicts the known constant and 7, > 0 stands for the known initial condition.
In this paper, the TVSE is designed as follows:
Rorr = A%+ Acko_r + BF(RS) + K, (v, — Do)
25 = M,%, (7)
where K; is the TVSE gain and %; is the estimation of neural state x,.

Let the estimation error (EE) be e, = x;, — %, and the controlled output EE be Z; = z, — ;. Furthermore, the
controlled output EE system can be obtained from (1), (4) and (7) as follows:

€s+1 = (A - Kst)es + AAs(es + fs) + Ares—r + AAdr(es—r + ﬁs—r) + Bf(es) + ABsf(es + 525) + Csvls - KsESUZS + Ks‘gs
Zs = Mge; 8)

where f(es) =flxs) = f(%) and es_; = x5 ¢ — X5+
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Subsequently, the EE covariance matrix X; is specified as follows:
Xs = E{esez} 9

The main objective is to construct the TVSE of form (7) for MNNs with variance constraint, and the H. SE algorithm
obeys the following requirements simultaneously.

(R1) Let the matrices U, > 0, U, > 0, Uy, > 0 and the scalar y > 0 be given. The controlled output EE Z; with the
initial state ¢;(I = —1,—1 + 1, ...,0) satisfies

S = E{ 20 (12012 = v2llvsli3, )} - v Efed Upeo + it ef Upe} < 0 (10
where ||v5||121¢ = vl U,vs and v = [v]; vI]".
(R2) The EE covariance obeys the condition
L2 =X <9s (11)

where 9, > 0(0 < s < N) depicts pre-determined known matrix, which reflects the admissible estimation precision
demand corresponding to the actual situation.

Remark 1: On the one hand, the non-augmented method designs the state estimator directly based on the
original system model, eliminating the need to construct additional augmented states. It avoids the increase in
model complexity caused by augmentation. On the other hand, it should be noted that augmented methods need
to process both original states and augmented states simultaneously with computational load increasing linearly
with the augmented dimension. In contrast, the non-augmented method directly corresponds to the original design
objectives and is capable of reducing computational complexity.

Before ending this section, we introduce four lemmas for subsequent calculations.

Lemma 1 [40]: The nonlinear activation function f(-) obeys condition (2), we can deduce

€s T Rls RZS Rgs €s
f(es + fs) * I _f(fs) f(es + fs) <0 (12)
1 «x fTRIf(Rs) 1
where
U7U, + U7U; Ul + U, fT@HU; + fT(2)U,
R15_= fl 2s = _T'R&S = 2

Proof: Based on [40], the proof of this lemma can be easily obtained and is thus omitted here.
Lemma 2: The nonlinear activation function f(-) satisfies condition (2), we obtain

4L
Pt

2(1-p

FrO0FQ) < { Str(UTU,) + ﬁtrwzuz)} 112 p € (0.1) (13)

where U, and U, denote matrices with known appropriate dimensions.
Proof: The derivation of this lemma is straightforward and thus omitted.

Lemma 3 [41]: For the DETM given by (5) and (6) with the initial value n, = 0, the internal dynamic variable obeys
ns = 0 forall s = 0 if the parameters A (0 < 2 < 1) and 6 (6 > 0) obey 16 > 1.
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Proof: Based on the condition (5), it holds that %Tls + 0 — ele; > 0forall s > 0. Then, it follows from (6) that ng,; =

s+1
( —%) >z (/1—%) , Which is easily seen n, > 0 for all s >0 under the condition 20 =1 and 7, = 0. This
completes the proof of Lemma 3.

Lemma 4 [28]: Assume that 16 > 1 holds and let scalars a;, > 0 and bg > 0 be given. If there exists matrix Y

obeying
Ys £ 0,(¥)
2 (14 a,)(1 + by) 22V, + [(1 + as_10)4(1 +O? (4 9)9(31 67 .
+|A+a)A+ b+ A +a;) (1+ %)2] o2 4 L0010 4 ”

with the initial condition Y; = 3, then Y; is an upper bound of Y, £ E{n?2},i.e., Y; < V.
Proof: Using the inequality MN” + MNT < aMM" + a NN (a > 0), it follows from (5) that
2
eSTsSanSHf) 31;’—26n§+(1+§)02 (15)
From (6) and (15), we can derive that
Yo =E{(4ns + 0 — E.STES)Z}
= E{(Ans + 0)2 + (ESTES)Z = 2(Ang + 0')8585}
= E{A*n2 + 6% + 2An,0 + (el'e;)? — 2(Ang + 0)el &g}

< (1 +a)(1+b)PEMZ + (1 +ag)(1+ by 1)o? + (1 + ag")E{(&] &5)%}
<A +a)(d+b)AEnN2+ (1 + ag)(1 + by )o?

_1+ [(146)2 1)2 2(1+6)(0%2+1
+(1 + asl)[ 94 T];}‘F(l +E) 0'4 +%7]§O’2]

1+az H(1+60)%  (1+6)(1+62
< L+ a)(1+ b)a2y, + [ Ar0r | (r0C+0T)

(1+6)(1+62)

2
PE +(1+a)(1+ bs_l)] o+ (1+ as—l) (1 + %) ot

+]
Furthermore, we can easily obtain Y, < Y;, which ends the proof.

3. Primary Results

In this section, new sufficient conditions are derived to guarantee two desirable performance indices including
the prescribed H. performance requirement and the EVB.

3.1. H- Performance Analysis
To begin with, a sufficient condition is obtained to ensure the H. performance constraint via the RLMIs method.

Theorem 1: Consider the MNNs with variance constraint (1). Suppose that matrices U, > 0, U, > 0 and Uy, > 0,
the scalar y > 0 and the TVSE gain matrix K; in (7) are given. Under initial conditions 7, = 0, R, < y*U, and Q; <
Y*Uy(l = —1,—7 + 1,...,—1), if there exist PDRVMs {R}1<s<n+1, {Qs}osssn a@nd the positive scalar k, obeying the
inequality
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®, ©, —-RI, 0 0 0 0 0]
x 05 fGE) O 0 0 0 0
x x @5 0 0 0 0 0
| % * * O O 0 0 0
o=, 1 . Ma o o o]<O (16)
* * * * * Bg6 0 0
* * * * * * 0, 0
* * * * * * * BOgg

with
0,; = 10AT Ry, A+ 11DT KT Ry, 1 KDy + 11AAT R 1 AA + Qs + MIM, — Ry — Ry
@12 = AT.RS+1B - RZS' @22 = 11AB§.’RS+1ABS + 1OBTRS+1B —1
®33 = 1155\5TAA£:RS+1AAsfs + 11f£—TAA§T:RS+1AAdT£S—T + 11fT(5C\s)BT‘{Rs+1Bf(5C\s) +% —KsO — fT(jc\s)f(jc\s)

044 = 11A¥RS+1‘4—T + 11AA§T:RS+1AACIT - Ds—‘r

r 1 A—1+kK
@55 = 12KS RS‘I’IKS - (5 + KS) I, @66 = Tl
0,7 = € Rs41Cs — Vzuqn Ogg = 2E{ K{ Rg1 K Es — Vzuq; (17)

then the H. performance constraint in (10) is ensured.

Proof: Define

M(es) = el Rees + Y5zl el Qe + % (18)
To proceed, according to the EE system (8), it can be concluded that
E{AM (e5)} = E{e] A" R 11 Aes + €] DI K Ry 1K Dses + el AATR 1 MAses + RTAATR 1 MR + el AT Ry Aces o

+f7(es + X)B" R 11 Bf (65 + %) + e{_1AAGRs10Agces o + R AAG R 1804 R + T (65 + X)AB]

X Ry 41ABf (e + ) + VC Ry 1Cov1s + V3Eg K Ro 1 K Egvas + fT(X)BT Ry Bf (Xs) + e K Ry 1 Ki&s
—2eTATR K. Dses + 2eTATR | AAjes + 2eTATR L AAR, + 2eTATR 1 Aveg_ + 2eTATR 1 Bf (eg + £s)
+2eTATR  AAyres_, + 2eTATR L AAy g + 2eTATR (ABf(eg + &) + 2eTATR 1 Koes — 2eTATR 44

X Bf (%) — 2eJ DI K{ R, 1AAses — 2e{ DI KI Ry 10ARs — 2e] DI K Ry 1Aces_ — 2e] DIKI R, Bf (es + )
—2eJ DK Rs10Agres_ — 26J Dy K Ry 1 AAR o — 2e{ D{ K Ro1 ABsf (es + %) — 26 DI K Ry 1 Ké
+2eIDIKIR 1 Bf (%) + 2eTAATR  AAR, + 2eTAATR 1 Areq_; + 2eTAATR . Bf (eg + %) + 2eTAATR 4
X AAgres o + 2e{ AATR 1 AARs_o + 2] AATR 1 ABSf (e + %) + 2ed AAI Ry 1 Keg — 26 AAT R 1 Bf (%)
+28TAATR 1A e r + 2RTAATR, 1 Bf (es + %) + 28TAAT R Adyres_, + 28TAATR 1 AAR,_, + 28T AAT

X Rs110Bsf (e + Xs) + 28 AAT R 1 K& — 2RI AAT R4 Bf (Rs) + 26l AT R 1 Bf (es + %) + 2e{_ AT R,y

X Mgres_o + 26 AT R 1 AR o + 2e] L ATR 1 ABf (€5 + %) + 2el AT Ry 41 Kses — 2e]_ AT Ry 41 Bf (%s)
+2fT(es + )BT Ry 410 gres_o + 2f T (e + R)BT R 1 AA R o + 2f T (e5 + )BT R ABf (e + Xs)

+2fT(eg + £) BT Rey1Kses — 2f T (€5 + R)BTRyy1 Bf (Xs) + 260 (AAL R 1 AAGRs_, + 2e]_AAL Ry 41 AB;

X f(es + &) + 2el_(AAG Ry 1 Kses — 2e]_(AAG R 1 Bf (Rs) + 28] DAL R 1ABsf (€5 + £5) + 281_AAY Ry yy
X Kgeg — 28_ DAY Roi1 Bf (R) + 2f 7 (es + X)ABI Ryy1Kses — 2f T (e5 + R)AB] Ry Bf (Rs) — 28] KS R

_ ~ 1 s
X Bf(xs) - Zv;sEZKgRs+1Ksss + 9 (/1775 +o0— SZES) - % + egDses - eg—tDs—res—‘r - ezgases} (1 9)
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Applying the fundamental inequality 2a”Hb < a"Ha + b"Hb(H > 0), we can derive the following results

E{—2e{ ARy, 1KDses} < E{e] AT Ry, Aes + el DI K Qi1 KsDses}
E{2eTATR 1 AAe } < E{eTATR ., Aes + eI AATR, 1 AAses}
E{2el ATR 1 AA xR} < E{elTATR,, Aes + RTAATR, 1 AA X}
E{2e] AT Rsi1Are5_.} < E{e] A" Ry Aes + e [ ATRs 1 Ares_.}
E(2ef ARy, 10A e o} < E{e] ARy 1 Aes + e DAL Rei1DAgres_}
E{2ef ARy, 1AAg R} < E{e] AT Ryy1Aes + ] DAY Re 1 DAgrXs_o}
E{2e] A"Rs,1ABsf (es + %)} < E{ed A" Ry, 1Aes + f7 (65 + 2)ABS R 1 ABs f (e + %)}
E(2e] A" Ry, 1Ko} < E{e] ARy i1 Aeg + el K Roy1Koes)
E{—2el A" Ry 41 Bf (R5)} < E{el A"Ryyq1Aes + fT(R5) BT Ry41Bsf (%)}
E{—2e{ D] K Rs;1AAse} < E{el DI K R 1 K;Dses + el AATR, 1 AAges}
E{—2e{ D{ K] R, 1AA R} < E{ef DI KS Ryy1KDges + XTAATR, 1 AAX}
E{—2e{ D K] Rg,1Ares_.} < E{e] D K Ryy1KDses + el ATRy 1A e o}
E{—2eJ DJ K{ Rs11Bf (es + %5)} < Efef DJ K{ Rs11K;Dses + f T (es + 2)B" R 11 Bf (€5 + X5)}
E{—2e{ D K] Rs11AA e o} < E{el DI K Ry 1 KiDseg + ef_(AAG R 1 AAyres o}
E{—2e{ D K] R, 1AA%s_.} < E{e{ DI K] Ry 1K Dses + X]_AATR, 1 AAsRs_ 1}
E{—2e{ D] K Ry, 1ABsf (es + %)} < E{eJ DI KI Ryy1K Dseg + f7 (s + 2:)ABI Ry 41 ABs f (5 + %)}
E{—2e{ D] K] Rs,1Kse} < E{el DI K] R, 1K;Dses + el K Ry 1 Kseg}
E{2e{ D] K{ Ry41Bf (%)} < Efed DI K Ry 1KsDses + fT(2:)B™Ryy1 Bf (%)}
E{2elAATR,, 1 AA R} < E{eTAATR,,AAje, + RTAAT R, AA R}
E{2e] AA{ Ry 1A e 1} < E{e] AR 1 AAges + el ATRg, 1 Ares o}
E{2ef AA{Rs,1Bf (s + %)} < E{e AA{R, 1 AAses + 7 (e + )BT Ry 11 Bf (e + %)}
E{2e{ AA{ Ry 10Ag 5 o} < E{e] AAT Ry, AAses + el (AAT R, 1A gres i}
E{2e] AA{R¢410A R o} < E{e] AR, 1 AAses + XI_AATR 1 AAsKs_ 1}
E{2e{ AA{R¢41ABsf (5 + %5)} < E{ed AATR; 1 AAges + 7 (es + X)AB] Ry, 1 ABs f (65 + %)}
E{2e] AA{ R 1Kses} < E{e] AA{ R, 1AAses + el K R 1 Koeg)
E{—2e{AA{Ry,1Bf (%)} < E{e] AR, AAges + fT(R)B"Rs,1 Bf (%)}
E{2%] AATRg 1 Ares o} < B{R{AATR 1 AARs + el ATRg 1 Areg o}
E{22] AA{ Ry 41 Bf (es + £5)} < E{R{AAT R 1 AA R + T (e + £5)BT Ry Bf (e + X4)}
E{2%{ AA{Rg41AAgres o} < E{X]AATR 1 AAGRs + ef_(AAG R, AA e o}
E{2% AATRg 41 AAGRs o} < B{RTAAT R 1 AAGRs + R]_AATR 1 AR}
E{2%] AATRs 1 ABsf (€5 + %)} < EB{X] AAT R, 1AA R + [T (e + £)AB] Ry 41 ABf (e5 + )}
E{2%{ AATRg 41 Ko} < E{RTAATR (1 AAGRs + el KT Ry 1 Ke)
E{—2%] AA{Rs 1 Bf (%)} < E{RIAAT R, 1 AAGRs + fT ()BT Re1 Bf ()}
E{2e]_;ATRs.1Bf (es + £5)} < E{e] AT Rgy14re5_ ¢ + [T (65 + 2)B" Ry 11 Bf (65 + %)}
E{2e]_;ATRs110Agres—c} < B{e] (ATR 1 Aces_ + el AA R 1 AAyres o}
E{2e{ AT R¢410As% o} < E{el_;ATRs 1Al o + R AA{ R 1 AARs o}
E{2el_;ATRs.1ABsf (e + %)} < E{el ;AT R 1Aeso + [T (es + X)AB Ry 1 ABf (5 + %)}
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E{2el_ATRs1Kses} < E{el_(ATRs 1 Ares o + el KT Ro, 1 Kes)
E{—2e]_ AR, Bf (%)} < E{el_;ATRg,1Aces_; + fT(R)B"Rep1 Bf (£5)}
E{(2f7 (es + 2)B" R 10Agres—o} < B{f (€5 + X)) BT Roy1 Bf (5 + %) + €] tAAG Ry 41 AAgres o}
E{2f" (es + X;)B" Rs41AARs_} < B{f " (e5 + £)B"Ryy1Bf (€5 + Xs) + RI_AATR 1 AARs_ .}
E{2f" (es + £5)B" Ry 11 ABsf (€5 + %)} < E{f " (es + £)B"Ry11Bf (e5 + X5) + f" (es + £)AB{ Ry, ABf (e + %)}
EQ2f7 (es + 2)B" Ry 1Kses} < E{f T (es + X)B" Ry Bf (€5 + &) + £ K Ry y1 K&}
E{=2f"(es + 2:)B" Ry 11 Bf (%)} < E{f " (e + )BT Ryy1 Bf (€5 + £5) + fT(Xs)B" Ry 41 Bf (%)}
E{2ef_;AAG Rsy1AARs o} < Ele]_(AAG Rey1AAgres_o + R DAL R AR}
E{2e{_AAG Rs1ABsf (65 + %)} < E{el_;AAGRey1MAgres o + fT(eg + X)AB] R, ABsf (e5 + %)}
E{2e]_;AAG Rey1 K5} < Elel_(AALRey1AAgres o + e K Ry Ke}
]E{_ZesT—rAAT :Rs+1Bf(9?s)} < E{esT—rAAT Rsi18A4.65_ + fT(fs)BTRsHBf(fs)}

]E{sz r ~'Rs+1AB f(es + xs)} < ]E{xs ‘r
]E{ sz TAA s+1Bf(xs)} < ]E{xs 1'
]E{sz TAA51R5+1K 55} < ]E{xs ‘L'

RS+1AAdT£S—T + fT(es + J’C\S)ABsszs+1ABsf(es + fs)}
:Rs+1AAd‘rjc\s—r + fT(jc\s)BTfRs+1Bf(5C\s)}

RS+1AAdT£S—T + EgKST“}ZS+1KSgS}

E{2f" (es + X)ABs Rs11Kses} < E{fT (e5 + X)ABS Rs11ABsf (65 + £5) + &5 K Rsy1 Ks&s}
E{—2fT (es + £)ABS Rs41Bf (%)} < E{f" (&5 + £:)ABS R41ABsf (£5) + T ()BT Rs11 Bf (£5)}
E{—2&7 KJ Rs1 Bf (%)} < E{es K Roya Kses + [ ()BT Rora Bf (%)}
E{—2v3sE5 K§ Ry41Kses} < E{v3sEs K Ry 41K Esvas + &5 K§ Ry 41 K5}

Furthermore, through systematic collation and integration of the aforementioned analysis, the following results
are derived:

E{AM (e,)} < E{10eTATR,, Ae; + 11eT DI KT R, K Dse; + 11el AATR,, 1 AAses + 11RTAATR, 1 AA R
+1lel_ AT Rgy1A 65 + 10f (e + £)B R, Bf (65 + &) + 11el_AAG Ryy 1AMy es_;
H11R]_AAG R 1 AA g1 5o + 11T (e + Z)ABI R 1 ABsf (€5 + X) + v{CI R 11 Csvi
+205E{ K Ro 11 K Esvys + 11fT(R)BT Ry y 1 Bf (%) + 126] K Ry 1 Keg + 2ef ATRg 1 Bf (e + Xs)

+elQge, —el Qs e, — el R.es + % (Ans +o—eley) — %} (20)
Adding the zero term zI Z; — y*v{ U, v — 2] Z; + y*v! U, v, to E{AM (e,)}, it is straightforward to obtain
~ [T,
B(AM (e} < B{INT ol18 | - 727 + yuluyv.] (21)
where
1 T
Mo=[er fre,+2) 1 elo e @]
@9, ATR,,B 0 0 0 0 0 0]
x 0,, 0O 0 0 0 0 0
x x ®; 0 0 0 0 0
o=|"* * *x 0y O 0 0 0
* * * * @55 0 0 0
* * * * * @66 0 0
* * * * * 0,, 0
* * * * * * * Bgg
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0, = 10ATR, 1A+ 11DT KT Ry, 1 K D + 11AAT R 1 AAg + Qs + MM, — R
0,, = 11ABTR,,,AB; + 10B"R,,,B

~ _ _ o
933 = 11x§AA§RS+1AASxS + 11xz—‘rAAgr-‘Rs+1AAdrxs—r + 11fT(xs)BTRs+1Bf(xs) + 5

~ 1 ~ A-1
855 = 12KI Ryy 1Ky — 21,866 = =21 (22)

with 0,4, 6,, and 044 defined below (17).
Based on Lemma 1 and (5), it follows that
E{AM (e;)} < [E{[HST v[10 [H ] — 217, + y*vIU,vs — [e Rises + 2e] Rysf (X + e5) + 2e] RY
2 TR + e () + fT(Rs + e (B + € + [T RIS @] + ks (g + 0 — el )}
=]E{[HST vs]e[vs]—zszs+y vIU vs} (23)
where 60 is defined in (16) and k, depicts a positive scalar.

Summing both sides of (23) with respect to s from 0 to N — 1, it is straightforward to get

N-1 N-1 -1
Z E{AM (ey)} = ]E{e,EfRNeN —elRyeq + Z el Qe — Z el Qe + %V}
s=0

I=N-1 l=-7
N-1 H N—-1
< E{Z[HST v [v” - IE{Z (272 - yzvST‘Uq,vs)} (24)
s=0 s s=0
Furthermore, we obtain
N-1 -1
Ji=E z 1zl =y ||Vs||'u(,,)} [eou(peo + Z € uzpel}
s=0 I=—1

N-1 -1
< —El{elRyey — elRye, + Z el Qe — 2 el Qe + %V}

I=N-1 l=—7

- €ou¢eo+ Z e U¢el]+IE[Z[HT T]@[ ”

{N 1 [ ]+e$(320 Y?Uy)eo + Z el (Qu—v Ulp)ez}

5=0 l=-1

N-1
—[E{eICRNeN + Z el Qe + %V} (25)

I=N-1

From the conditions ® <0, Ry >0, Q; >0, Ry <y*Uy, ny >0 and Q; <y*Uy(l=-7,—-7+1,..,—1), it is
straightforward to derive J; < 0.

3.2. Variance Constraint Analysis

Subsequently, we begin to analyze the variance constraint, that is, the sufficient condition is derived to guarantee
the EVB by using the stochastic analysis technique.
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Theorem 2: Consider the MNNs with variance constraint (1). Given the TVSE gain matrix K; in (7), under the initial
condition G, = X,, if there exist PDRVMS {G};<s<n+1 Satisfying the inequality

gs+1 2 z(gs) (26)
where
z(gs) = IOAQSAT + IOKSDSQSDSTKST + 10AASQSAA£ + 10AASJ?SQSTAA£ + 1O/ITQS_T/H + 10%tr(gs)BBT

+10AA4,Gs_;AAT, + 10AA g, Rs_ RT_,AAT, + 20Xtr(Gs)AB;ABT + 20%tr(2,2T)AB,ABT + 11wk KT

1

+CV,CT + 2K, E,V, ETKT, X = A tr(UTU,) + _1 tr(UTU,)
sVisbs stisVashbs s 2(1 p) ,0(1 ,0)
1+6 1
w = ?7]34'(1 +5)0’2 (27)

then it follows that G, = X,vs € {1,2, ..., N + 1}.
Proof: In light of (9), the EE covariance matrix X,,, can be derived as:

Xs41 = E{es+1esT+1}
= E{Ae,el AT + K,D;e,eI DTKT + AAjeeT AAT + AA R RTAAT + ALe,_el (AT + Bf(e,)fT(es)BT
+AAgres_rei DAy, + AA X (X]_AAG, + ABsf (e + ) f T (65 + X)AB] + CoviviiC + K Egvpvss
X ETKI + K,e,eTKI — K;Dse;el AT — AeseI DIKT + AAsesel AT + Aesel AAT + AA Riel AT + Aeg
x RTAAT + A,eq_.el AT + Aegel AT + Bf(es)el AT + Ae fT(es)BT + AAgres_el AT + Aesel AAT,
+AA g Rl AT + Ae &1 AAT. + AB,f (es + %;)el AT + Aesf T (es + X, )ABY + Koe,el AT + Aegel KT
—AA e, eI DTKT — K. D.e.eT AAT — AAR,eT DTKT — K.D,e T AAT — A e,_,eI DTKT — K. D e.el AT
—Bf(es)el DIK] — K;Dsesf " (e)B™ — AAyres_el DIK] — K;Dsesel (AAG, — AR el DIKT — KD
X esXI_ AAT — AB,f (es + %5)eI DTKT — K.Dse f T (es + %)ABT — K;e,eT DTKT — K;De eI KT + AA
X %;el AAT + AAge RTAAT + Ares_ el AAT + AAgesel AT + Bf (e5)el AAT + AAsesfT(es)BT + AAgres_cel
x AAT + Age el AAT, + AAR_ el AAT + AAe 2T AAT + ABf (e5 + %;)el AAT + AAge fT (es + %;,)ABT
+K el AAT + AAse,eT KT + Ares RTAAT + AA R el AT + Bf (e )RTAAT + AA R fT (eg)BT + Ayres_,
x RTAAT + AA Rsel_ AAT, + AAZ,_ RTAAT + AARRTAAT + ABf (e5 + %,)RTAAT + AA R fT (e + Xy)
X ABJ + KoeXd AAT + AA Rl KT + Bf (e)ed AT + Aces_fT(e)BT + Ayces_cel AT + Ares_cel [AAL,
+AARs_ced AT + Ares o R{_AAT + ABf (es + 5)el_ AT + Aces_f T (es + X)AB] + Kegel AT + Aces_;
X efKJ + M gres_fT(e) BT + Bf (eg)el_AAL, + AARs_of T (es)BT + Bf (es)2I_AAL + ABsf (e5 + %)
X fT(e)B™ + Bf (es)f"(es + X)AB] + Koesf T (e) BT + Bf (e)el K + DR el [AAG, + AAgres_R1_;
X AAT + ABf (es + Xs)ed_AAG + Mgres_f T (es + R)AB] + Kiesel AAG, + AAes_rel K + ABf (es + )
X X]_(AAGe + DAgRs_of T (es + X)AB] + Koe R AAG, + Ay %5 e KT + Koeof T (es + £)AB] + ABf (es + %)
X el Ki — KsesviEQ K — KEsvpse{KJ'} (28)
Based on the inequality xy™ + yxT < xxT + yyT, the following result can be derived
E{—K,Dse;el AT — Ae,eI DTKT} < E{Aesel AT + K,Dsesel DI KT}

E{AAse,el AT + Ae,el AAT} < E{Ae,el AT + AAsesel AAT}
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E{AA;x;el AT + Ae £TAAT} < E{desel AT + A 2,27 AT}
E{A,e,_,el AT + Aeel AT} < E{de,el AT + A e,_.el AT}
E{AAy e;_ef AT + Aesel AAT} < E{Ae;el AT + AAy.es_el AAL}
E{AA4 R el AT + Ae 8T AAT} < E{Ae,el AT + AA 4% &1 AAL}
E{AB,f(es + £,)el AT + Ae,fT (es + £)ABT'} < E{Ae,el AT + AB f(es + %) f T (es + £;)ABI'}
E{Bf(es)el AT + AesfT(es)BT} < E{Aesel AT + Bf (es)f T (es)B"}
E{K,e;el AT + Ae,eTKI'} < E{Aesel AT + K e,el KI'}
E{—AAse;eI DTKT — K.D;e,el AATR,, 1} < E{K;Dse,eI DTKI + AAse;el AAT}
E{—AA %,eT DTK — K.D,e 2T AAT} < E{K,D,e,el DTKT + AA 22T AAT}
E{-A.e;_e] DI K] — KDsesel AT} < E{K;Dsesel DI K] + Ace;_.el AT}
B{—Bf(e,)eTDIKT — K,Dyeof(e)BT) < B{K,Dyesel DIKT + BF (e)f (e)B)
E{—AAy.es el D{K] — K.Dsesel AAG.} < E{K;Dsesei DI K + AAgres_cel AT}
E{—AA;X; el D{KJ — K;Dse,®{_AAT} < E{K,Dseseq Dy KJ + AAgXs_ X AAS}
E{—AB,f (es + X;)el DI K — K Dsesf" (es + X)ABJ } < E{K;Dsesel DI K + AByf (es + %) f " (es + £)ABJ }
E{—Ksese DI K — K Dsesel K} < E{K;Dsesel DI K] + Koesel K}
E{AAR.eTAAT + AA e 8T AATY < E{AA e eTAAT + AA R RTAAT}
E{A,e,_.el AAT + AAesel AT} < E{AAse,el AAT + A,e,_ el AT}
E{Bf(es)el AAT + AAgesfT (e5)BT} < E{AAsesel AAT + Bf (es)fT (es)BT}
E{AA .es_el AAT + AAgecel AAT} < E{AAse.el AAT + AAges el AAT}
E{AAZ,_ el AAT + AA e 2T AAT} < E{AA e.el AAT + AA R, 2T_ AAT}
E{AB,f (es + X,)el AAT + AAsesfT (es + £,)ABT} < E{AAsesel AAT + ABf(es + %) f T (es + % )ABT}
E{K,e,el AAT + AAge eI K'Y < E{AAsesel AAT + Koe,eT KT}

E{A,e;_XTAAT + AA R el (AT} < E{AARXTAAT + Ae,_cel AT}
E{Bf(es)2TAAT + AA % fT (es) BT} < E{AA;2,2T AAT + Bf (e5)f T (es)BT}
E{AAyeq_ 2T AAT + AA .l (AAT} < E{AAZZTAAT + Ayeq_ el AAT )
E{AA 2, RTAAT + AARZT_ AAT} < E{AA R RTAAT + AA R, 2T, AAT}

E{AB,f (es + £;)XTAAT + AA X fT (es + X,)ABT} < E{AA R RTAAT + ABf (e + %) f T (es + £;)ABI'}
E{K,e 2T AAT + AAR.eTKT} < E{AA R RTAAT + Koe.eT KT}

E{Bf(e)el AT + Ace,_ofT(e)B™} < E{Ace, el AT + Bf(e)f7 (e)B"}
E{AAgces el AT + Aces_cel (DALY < EfAres el (AT + AAgres el [AAG}
E{AAsZs el AT + Ares (2 AAT} < E{Are,_cel (AT + DX, %{ AAT}

E{AB,f (es + £5)es_A7 + Aces_of T (es + £)ABJ} < E{AAse;_reg_cA7 + ABf (es + £)f T (es + £)ABS}
E{Kesel AT + Ares el KT} < E{Ace,_cel AT + Kool K]}

E{AAgres—of (es)B" + Bf (e)el AAL} < E{Bf (e,)f"(e)B” + Myces el LAY}
E{AARs_fT(es)BT + Bf (e)R]_;AAT} < E{Bf (e5)f (es)B" + A&y R]_ AAT}

E{ABsf (es + £)f " (e) B + Bf (e)f " (es + 2)AB{} < E{Bf (e)f " (e)B” + ABsf (es + %) (e5 + 2,)AB] }
E{KesfT(e)BT + Bf (es)el K} < E{Bf (es)f " (es) BT + K,e5el K}

E{AAR,_el AAG, + AAgres R1_ AT} < E{AAyres_cef (AAG, + AAGR,_ 2] AAL}
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E{AB;f (es + Xs)es_AAG, + ABsf (e + %5)es_AAg} < E{AAgres el AAG + ABsf (es + %) (es + £)ABS }
E{stses,T—rAAgr + AAgres_e] KT} < E{AAg e el [AAG, + Koeel K]}
E{AB,f (es + X)X AAGe + DM ar %5 of T (€5 + 2)ABI } < E{AA o %o X]_1AAG, + AByf (e + %) f T (65 + 2)ABJ }
]E{Ksesxs AAL + AR eT KT} < E{AA % RT AAT, + Koe,eTKT}
E{Ksesf " (es + %)ABJ + AByf (e + %5)ed K} < E{ABsf (5 + X)f T (&5 + X:)AB + Kyesel K}
E{—Ksesv3sEd K — K Esvysed K} < E{KEsvpv3 ES K + Koegel KJ ).
Through collation and integration, the following results are obtained:
Xgp1 < E{104e,el AT + 10K,Dse;el DT KT + 10AA esel AAT + 10AA X 2T AAT + 104,e,_ el AT
+10Bf(es)fT(es)BT + 10AA  e_rel AATL. + 10AA 425 2T AAY, + 10AB,f (e + %)
X fT(es + £)ABT +11K e, T KT + Covy 0T, CT + 2K Eqv, ,vI ETKT}

It follows from Lemma 2 that
E{f(en)f " (e0)} < Eftr (F(e)f " (e))} 1 < XEfel e )1

E{f (es + £)f T (es + %)} < E{tr(f (es + £,)f T (es + £))H
< 2XE{ele }I + 2XE{xI %, }I

where X is defined in (27). Furthermore, it is obvious to obtain

Xosy < E{104e.eT AT + 10K, D e,el DTKT + 10AA esel AAT + 10AA % 2T AAT + 104,e,_,el AT
+10%Bele BT + 10AA g e, el AAT, + 10AA 4%, 2T AAT, + 20XAB.el e, ABT + 20XAB,
X XT 2 ABT +11K,e,eTKI + Cyv,,vT,CT + 2K, E v, vI ETKI'} (29)

Noting the fact
esel < elegl
we have
E{ele}l < wl
where @ is defined in (27). According to the property of the trace, it is straightforward to get

E{ezes} = ]E{tT(eSEZ)} = tr(Xs)
xI%, = tr(x &7 (30)

Combining (29) with (30) results in

Xoi1 < 10AX, AT + 10K,D X, DI KT + 1004, X, AAT + 10AAR,XTAAT + 104, X,_ AT
+10Xtr(X,)BBT + 10AA 4. X AAT, + 10044, R R AAT, + 20%tr(X,)AB,ABT
+20%tr(2,21)AB,ABT + 11wK Kl + C,V,CT + 2K,EV, ET KT

= T(Xs)

Noticing G, = X, and letting G, > X, one has
T(Gs) = T(Xs) = X4 (31)
From (26) and (31), we obtain

156



Event-Triggered H- Estimation for Memristive Neural Networks
Gs+1 2 T(Gs) 2 T(X) 2 Xgiq

Therefore, the proof is now complete.

Gao et al.

(32)

Based on the analysis of Theorem 1 and Theorem 2 mentioned above, the following sufficient criteria are

obtained, which can guarantee the two desired constraints.

Theorem 3: Consider the MNNSs with variance constraint (1). Assume that the TVSE gain matrix K; in (7) is given.
For given scalar y >0, PDRVMs U,, Us and Uy, under the initial conditions G, = X,, Ry <y*U, and Q; <
Y*Uy(l = —7,—7 + 1,...,—1), if there exist PDRVMS {R}1csen+1, {Gshsen+1 aNd {Qs}oss<n Satisfying the inequalities

211 Zq2 0 24 Zis 0 0 0
¥ Ty 00 Zp 00 X Xy Zpg
* * Y33 0 0 0 0 X5
* * * X4 0 0 0 0
* * * * 55 0 0 0
* * * * * PIP 0 0
* * * * * * 277 0
* * * * * * * 288
* * * * * * * *

* * Y33 0
* * * Yyu

where
211 = R+ Qs — Ry + MsTMs' L, = [_st _R3Ts]
L4=[0 0 AT]Zs=[34T VIIDTKT +11AAT]

™M
©
2

OOOO@MOOO

<0

/1—1+KSI}

) N
. f (&) . 0 0 BT]
22 * _fT(xs)f(xs) + —Kso|’ 2=
s = [VI1ABT 3BT] 5 =[ 0 o
271 o 0 1'7%7 7 |V112TAAT  V11fT(%,)BT
0 0 0 0 . 1
%= |yiteran, 0 o of B = dog{-Ree-(G-x)1
[0 VI1AT V11A4L, 0 cr 0
Z3z=0 0 0 2V3KT | Za0 = 0 V2ETK]
0 0 0 0 0 0

Lyy = diag{_yzqu —¥*Uy, — s+1} Igs = diag{—Rg}y, —
Tee = diag{—R:}y, —R511}, 277 = diag{—R}, —Ri}}

-1

s+10

Zgg = diag{—R:}y, Rty —Rit, —Riti} Zoo = diag{—R5}y, —
Y1 = —Goiq + 10AQSAT + 10ATgS_TAI + 103€tr(gs)BBT + CsvlsCST

Yi, = [VI0K,D,G, VI0AA,G, VI10AA%,]

Yis = [VIlwK, V100A44.Gs—; VI0AAu R

Yy, = [2V5%tr(G)AB, 2V5Etr(R,2T)AB, V2K.E V)
Yz, = diag{—Gs, —Gs, —1}, Y53 = diag{—1, —Gs_,, — I}

Yaq = diag{—tr(Go)I, —tr(Zs2)1, —Vy,}

then two desirable constraints can be satisfied simultaneously.
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Proof: In terms of Theorem 1 and Theorem 2, the H. performance constraint in (10) obeys J; > 0 and the EVB
obeys J, == X, < 9,, that is, the inequality (33) implies (16) and (34) implies (26) under the initial conditions, and we
obtain sufficient conditions to ensure the desired H- performance constraint and the EVB, which completes the
proof of Theorem 3.

In the end, the following theorem is obtained to provide a solvable algorithm for the TVSE gain.

Theorem 4: Consider the MNNs (1) under variance constraint. For given the attenuation level y > 0, the PDRVMs
Uy, U, and Uy, a series of matrices {Y}o<s<n+1, Under the initial condition

"RO < y2u¢
Q <y*Uy, (I=-1,-1+1,..,-1) (35)
Efeoes} = Go < Do

if there exist PDRVMS {R;}1<s<n+1: {Gshicssv+1 and {Qg}o<s<n, the estimator gain matrix {K }o<s<y and scalars €; ; >
0(i = 1,2, ...,8) obeying the inequalities

Q11 Qo O3
* Oy 0|<o0 (36)
* * Q33
Wy, Wi, Wiz Wi 0 0 0
* Y,, 0 0 wr 0 0
* L 0 0 xr 0
* * Yy 0 0 T 1<0 (37)
* * * * —€g 5l 0 0
* * * * * —67’31 0
BE] * * * * * _68,51—
gs+1 - 2)5+1 <0 (38)
with the following updating rule
Rs = R (39)
where
241 212 0 X4 Ei5 O 0 0 0 7
* Xy 0 Zy 0 Ey Ey;, O 0
* * Xaa 0 0 0 0 23 O
* * *  Hy O 0 0 0 Z4
Q= * * * * Hsg 0 0 0 0
* * * * * Z66 0 0 0
* * * * * * By 0 0
* * * * * * * Egg 0
* * * * * * * Ego]
0 0 0 0 0 7 0 0 0 0
0 EZ,SM 0 63‘5]\/‘3 0 64,5]\/;; 0 0 0
0 0 0 0 0 0 0 e O
0 0 0 0 0 0 0 0 0
Qy, = H 0 0 0 01,03 = 0 0 0 0
0 0 }[ZT 0 0 0 0 0 0
o o o o0 o 0 0 0
0 0 0 0 0 0 Hf 0 HI
L 0 0 0 0 0 0 0 0 0

158



Event-Triggered H- Estimation for Memristive Neural Networks
Oy = diag{—e oI, —€ 5], —€3 51, —€35, —€31}, Q33 = diag{—ey oI, €41, —€s,51,
Ei1 = —Rs + Qs — Ryg + M{ M, + e1,sN1 Ny, 21, = [-Rys  —RL]
Ta=[0 0 AT]Es=[34T VI1DTKI 0]

0 0 BT] — [0 3BT]

o
[=)]

0 0 _[ f(fs)
% =lo viTprer) o= [ o TR + 5 r«sal

. 1 A—=1+4kKg
53y = diag -8, - (5 )1 AR )

0 VI1AT 0 0 0
Bss=10 0 0 2V3KI|[Zso=|0 ~2ETK
o 0 0 0 0 0

g = diag{—yz‘u(p, _quqn _§s+1}' Hss = diag{_§s+1' —Rs41, _§s+1}
Ege = diag{_§s+1' _§s+1}' By = diag{_ﬁsu' _§s+1}
Egg = diag{_§s+1' _§s+1' _§s+1' _§s+1}' Egg = diag{_ﬁsu' _§s+1}

Gao et al.

6551}

Wy = —Gspq + 104AG,AT + 104,G5_ AT + 10Xtr(G)BBT + CVyCT + (€65 + €75 + €g5)HHT

lplz = [\/EKSDSQS 0 0],‘?13 = [V 11(D'KS 0 0]xlp14 = [0 0 \/EKSESVZS]

Y,, = diag{—Gs, —Gs, —13, Ys3 = diag{—1, =G5, —1}, Yo = diag{—tr(gy)I, _tr(fs’?sT)I' —Vys}

Hi=[0 o VIIHTL N =[Ns 0L 3, =[V1i1H" ol
=[0 NX]Hz = [VIIHT ol NS =1[0 Npx,_.]
Ho=[V1IHT 0 0 ol N =[N, 0 O0LHs=[0o 0 VIIHT o]
=0 VION,G; VION,%]. X =[0 VION,G,_, VION,Z,_,]
= [2V/5%tr(G)N;  2V5Xtr(2,2T)N; 0]

then the TVSE gain can be obtained by solving the RLMIs (36)-(38).

Proof: Firstly, we handle the parameter uncertainty, (33) can be rewritten as

>211 212 0 214 E15 0 0 0 0 7
* Ly 00 Xy 0 By By By O
* * X3 O 0 0 0 233 O
* * * Xy 0 0 0 0 Z4
* % % % X 0 0 0 O |+NF[H+HIF, NI+ NFI H + HFy NT + NoFT H
* * * * * Y66 0 0 0
* * * * * * P 0 0
* * * * * * * Xgs 0
* * * * * * * * Yog
+HTF, NI + NoFJ Hg + HIFy NI + NoFL Hy + HIF, NI < 0
where
T=[N;, 00O O O O O 0,H,=[0 0 0 0 #, 0 0 0 0]
=[0]\I‘2TOOOOOOO] =0 0 0 0 0 H, 0 0 0]
=0 » 0 0 0 0 0 0 O],ﬁsz[O 0 0 00 0 H; 0 0]
N'=[0o " 0 0 00 0 0 0,H=[0 00000 0 #H, 0]
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NI'=[0 0 ' 0 0 0 0 0 0LH,=[0 0 0 0 0 0 0 H; 0]

Furthermore, it is not difficult to derive that

21 212 0 X4 Ei5 O 0 0 0 1
Ty 00 Zp 00 By By By O
* *  Xaa 0 0 0 0 =233 O
* * * X 0 0 0 0 Z4
* % x % T 0 0 0 0 |+eNNT+etATH + € NNT + €5 tHIHs + €3 NN + e51HT H;
* * * * * 266 O O O
* * * * * * X7 0 0
* * * * * * * Ygs 0
* * * * * * * * o9

+ey s NNT + € HT Hy + eg N NI + e51HTH, < 0
Similarly, based on (34), we can get

YI 1 qu 2 lIJ1 3 qu‘l—
* Yz 2 0 0
* * Y33 0
* * * Yy

+ gﬁsFl,sgl,s + 5{51:17:5%? + mSFZ,S$2,S

+*§£,SF2’I:S§RZ + irt5F3,s~53,s + bg,ng:Smg <0

where
RE=[H" 0 0 0
H1-=1[0 Ws; 0 0]
H2s=[0 0 X; 0]
$H3s=[0 0 0 Y]

Furthermore, we obtain

Yy, Wi Wiz Wi
x Yy, 0 0
* * Y33 0
* * * Yuu

T -1&T T -1&T T -1&T
+ E6,59?5:5125 + e6,5 1,5551,5 + 67‘59?5%5 + e7,5 2,5552,5 + EB,SSRSERS + e8,5 3,553,5 <0

Thus, we can conclude that two desired requirements can be achieved simultaneously.

Remark 2: Contrary to existing approaches, the key distinctions of the proposed H. SE scheme are listed as
follows: (1) the developed H- SE method aims to ensure that the error covariance is bounded, which can be adapted
to fulfill the admissibility of the presented H. SE strategy to some extent; and (2) the disturbance attenuation level
can be achieved, where the sufficient condition is derived to ensure the desired H. performance constraint within
the time-varying framework. Consequently, the proposed H. SE scheme obeys both the predefined H. performance
requirement and the EVB, which might provide more application domains.

Remark 3: Inequalities (33) and (34) in Theorem 3 are mainly derived from the results of Theorem 1 and Theorem
2 via the Schur complement lemma. The reason lies in that we aim to solve the gain matrices of the finite-horizon
estimator, thus it is necessary to handle the nonlinear terms, which also requires using the Schur complement
lemma to convert the recursive matrix inequalities into symmetric block matrix inequalities. Inequalities (36) and
(38)in Theorem 4 are obtained by addressing the uncertainties in the two matrix inequalities of Theorem 3 through
the S-procedure and expressing R;! (the inverse of R,) using updated matrices, and the proof section of Theorem
4 focuses on handling these uncertainties.
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4. A Simulation Example

In this section, the main purpose is to demonstrate the effectiveness of newly proposed H. SE method under
variance constraint.

For the MNNs (1), the related parameters are given as follows:

—0.66, |xy¢| > 1 (1) = {—0.45, 5| > 1 (610) = {—0.53, 1] > 1
022, x| =1 2V T 2015, x| < 17TV T 029, | < 1

a; (xy,5) = {

0.31, |xy 6| > 1

—0.43, |x,6| > 1 —0.54, |x,6| > 1
Grae(1s) = 0.11, |y 5| < Ganelas) = {0.21, x,s| <1  Oa2r(2) = {0.32, x,s| <1
i) = oy = (oL e < [
bya(x,5) = :22 IZI Z 1,55 =[-031 =—0.15sin(2s)]", E, =[-0.22 —0.15sin(2s)]"
D, = :0'1105_1'2"1(25) _0_2_12'1.1:( ZS)],MS — [-0.03 —0.21sin(3s)]

p=07 t=2 06=07 1=138

It is straightforward to derive that

044 0
1100 | o 1
H‘[o 0 1 1]' Me={1 o
0 0.15

041 0 033 0
o o1 | o o029
Nz = 032 0 | Ns = 022 0
0 043 0 0.01

Additionally, choose the activation function as follows:

0.48x, 5 + tanh(0.08x; ;) + 0.16x; ¢

fxs) = [ 0.37x; s + 0.3x, ¢ + tanh(0.06x; ;)

where the state variable is represented as x; = [¥1s ¥25]7, the mean of the initial value is ¢, = [2.4 0.7]7, the initial
value is £, = [-0.2 0.5]" and initial values of time-delay are ¢_; =[-1 2]", ¢_,=[2 -1]",2_;=[1 -1]" and
2, =[1 -2]". Set the weighted matrices U, =1, Uy = 0.11 and Uy, = I, the correlation matrices of the activation

function are U, = [82? 832] and U, = [8‘1}2 06136], the variance upper bounds {9,}o<s<n+1 = diag{0.3,0.3}, the

attenuation level y = 0.6, covariances V,; =V,, =1 and N = 80. For demonstration purposes, two cases are

considered with different values: Case I: 6 = 0.6; Case II: 8 = 6. Furthermore, according to (36)-(38), the TVSE gain
matrix K is designed in Table 2 and Table 3.
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Table 2: TVSE gain matrices (Case I: 6 = 0.6).

s K

_[0.2452 —0.2542

! K= 0.1132  0.5611

) K, = [ 03462 —0.4526
27 1-0.1355 0.1355

3 _ 103511 0.5461

37 10.1543 0.4514

Table 3: TVSE gain matrices (Case Il: 6 = 6).

s Ks

1 K, = [—0.4262 0.3562]

0.4352  0.2354
_[0.3451 —0.2455

2 K= 0.3515 0.4351
103241 —0.4221
3 K3‘[0.3452 ~0.5426

In the simulation, the norm sum of the controlled output EEs can be calculated under two cases. From Table 3,
it is not difficult to conclude that the norm sum of the controlled output EEs in Case | is smaller than that in Case Il.
By comparing two cases, we can conclude that a larger 6 value leads to more updated information, and the
estimation accuracy is relatively better. In addition, the triggering rate L, is defined as the transmission performance
level by L = % where W; stands for the number of actually transmitted data and N = 80 depicts the length of finite-
horizon. Furthermore, in order to obtain the relationship between the triggering rate and parameter 9, the triggering
rate is given in Table 4 with different values of 8. When 6 increases, the trigger rate monotonically increases. 6 is the
threshold parameter of the DETM, and a larger 6 results in looser triggering conditions, leading to increased
frequencies of data transmission and computation execution, thereby reducing resource-saving effects. Therefore,
a larger 6 leads to a higher event-triggering rate and weaker resource-saving performance.

The sensitivity analysis and parameter tuning rationale are supplemented for parameters p, g, 1 and y as follows:
(1) p € (0,1) is a parameter for handling the sector-bounded condition of the nonlinear activation function. (2) ¢ > 0
and 1 > 0 are core parameters of the DETM, controlling the triggering threshold and the update rate of the internal
dynamic variable. (3) y > 0 is the H. performance index and represents the disturbance attenuation level of the
system. We solved the RLMIs to obtain the y satisfying J; < 0.

Table 4: Comparisons with EEs of controlled output.

N-1
DAL
s=0

Casel: 6 = 0.6 3.2423

Casell: 6 =6 0.6745

The simulation results are given in Fig. (2-5). Fig. (2) describes the controlled output z, and its estimation 2, and
Fig. (3) depicts the EEs of controlled outputZ,. Fig. (4) and Fig. (5) describe the actual error variance and upper bound
of error variance e; and the upper bound with different values of 6. It is observed that the upper bound of error
variance decreases monotonically as 6 increases. According to the Table 4 and Fig. (5), we can conclude that the
presented DETM reduces the communication burden at the cost of sacrificing certain estimation performance of
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MNNSs. According to the above analysis, the simulation results demonstrate the effectiveness of the proposed H. SE

algorithm under DETMs.
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Figure 2: The controlled output z; along with its estimated value.
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This paper has tackled the dynamic event-triggered H. SE problem for MNNs with time-delay under variance
constraint. For the purpose of avoiding resource consumption in the communication channel, the DETM has been
introduced into the sensor-to-estimator. The TVSE has been designed for MNNs with variance constraint and time-
delay, where sufficient conditions have been obtained to guarantee two constraints including the specified H-
performance constraint and the EVB. Especially, a novel dynamic event-triggered H-. SE method has been proposed
without using the augmentation algorithm, and the TVSE gain has been given via the RLMIs method and the
stochastic analysis techniques. Finally, the effectiveness of the presented H. SE method has been verified by a
simulation example. This paper has discussed the dynamic event-triggered H.. state estimation for MNNs with
variance constraints and time-delay, but there are still many topics worth studying. For example, other
communication protocols can be adopted, such as the event-triggering round-robin-like protocol, the FlexRay
communication protocol and so on, which we will consider in depth in the subsequent study.
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