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ABSTRACT 

COVID-19 has reminded humanity of the devastating reality of a pandemic after many 

years. This global crisis fundamentally altered daily life and exposed significant 

vulnerabilities in public health systems worldwide. This work proposes a geometric 

curve-based prototype to support the fight against current and future pandemics. The 

study models a near-perfect estimation of the active case number with the help of the 

Bézier curve. The Bézier prototype consists of a C0 class, piecewise continuous, and 

segmented structure. The noiseless and cost-free model estimates the number of 

active cases in Germany, Canada, and Israel with minimum error. It compares the 

results obtained with those of cases in China. The absolute average error of the model 

is reduced to 0.087%. As a result, the consistent and cost-effective model can increase 

the likelihood of making rapid and accurate decisions against epidemics, produce well-

organized projections for the future, and improve the effectiveness of measures to be 

taken. 
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1. Introduction 

To briefly mention, five years ago, COVID-19 [1-11], which emerged at the beginning of 2020, spread to all 

continents in a short time and has become a pandemic. The pandemic can be addressed from different 

perspectives, such as the effects it has caused worldwide, the burden on healthcare systems, and economic and 

social consequences. The impact of COVID-19 on healthcare systems has varied significantly depending on the 

healthcare infrastructure and preparedness levels of countries. However, even in developed countries, one may 

observe serious problems with basic healthcare needs, such as hospitals, intensive care units, and ventilators [12]. 

The disease, which has surpassed the significant struggle of healthcare workers against the virus at the cost of their 

lives, has led to the collapse of systems almost everywhere and the loss of many lives. The troubles of developing 

countries have been compounded not only by the speed at which the virus spreads but also by limited resources 

and insufficient testing capacity. The pandemic has been brought under control more slowly in these countries [13]. 

The pandemic has had a major impact on the global economy [12]. Global trade is severely weakened due to 

production and travel restrictions. Although countries offer financial stimulus packages to ease economic hardship, 

this cannot prevent unemployment from rising. COVID-19 also affects social-human interaction [14]. Schools are 

closed, and distance education is introduced. Increasing income inequality in the process leads to social injustice. 

One of the most important steps in controlling the process is the development of vaccines [15]. A relative relief is 

provided via vaccines developed by researchers who do not have enough time, which should be a separate issue of 

discussion. However, the failure to provide a homogeneous distribution around the world related to access to 

vaccines appears as another factor that deepens social imbalance. While developed countries have the chance to 

vaccinate earlier, access to vaccines is limited in relatively low-income countries. This situation brings the problem 

of global vaccine inequality to the agenda [16-19]. 

This manuscript introduces a new approach on COVID-19 modeling. It constructs a prototype of the patient 

numbers for Germany, Canada, and Israel based on active cases using the Bézier curve and cross-checks this model 

with data from China. The Bézier curve model is a parametric, segmented, and adaptive model. 

Germany [12, 20], which has a strong health system, is one of the countries that has relatively well controlled the 

spread of the virus. However, capacity problems in intensive care units have caused concerns in the early stages of 

the pandemic. When compared to European countries, with the effect of the Pfizer/Biontech vaccine produced in 

the country, Germany's success in this sense can be said. Nevertheless, the first period of the pandemic is also 

difficult for Germany, especially due to the loss of labor and economic contraction. 

Glancing at Canada [12, 21], a high standard of living reflected in the social healthcare system, which has some 

particular problems, is noticed in the country. The country, which also exhibits successful management in 

vaccination, quickly reaches its people with extensive vaccination campaigns. Canada has become one of the 

countries that has taken important measures in the fight against the pandemic by restricting border crossings. 

Israel [12, 22], which has a reputation in the world related to genomics and biological studies, is also one of the 

leaders in vaccination. The strict implementation of social measures, together with masking, slows down the rate of 

spread of the pandemic in Israel. With the rapid vaccination, the decreasing spreading speed of the pandemic is 

observed relatively faster than in other countries. 

China [12, 23-25], the country where the pandemic first emerged, struggles with keeping the spread of the virus 

under control with strict quarantine measures. The country declares a “zero COVID” strategy in the early stages. The 

country’s large population causes remarkable problems for the country. In terms of vaccination, the Chinese state 

has launched a large vaccination campaign using its own Sinopharm and Sinopharm vaccines. 

The work includes an introduction, material and method, discussion, and conclusion sections. 

2. Data and Theoretical Background 

2.1. Basic Statistical Appearance 

This study is based on data (active case) from the Worldometer (https://www.worldometers.info/ (April 26, 2020)). 

These data belong between February 15 and April 26, 2020. First, a brief definition is presented for the data. With 
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descriptive analysis (Table 1), the data's change ranges, standard deviations, and variances are displayed. Table 2 

expresses the binary relationship of the data. Fig. (1) is the hierarchical cluster view. In Table 3, the standard of data 

distribution is observed. 

Table 1: Descriptive rates. 

 Min. Max. Mean Std. Deviation Variance 

China 38505 1908936 577230.26 634801.302 402972693293.605 

Germany 16 157770 54063.17 59333.965 3520519413.268 

Canada 8 46895 10639.83 14455.184 208952353.099 

Israel 1 15443 4621.08 5546.354 30762043.204 

 

Table 1 shows the standard deviation and variance of the data in addition to their minimum and maximum 

values.  

Table 2 denotes the binary correlation of the data. This score is strong when it is closer to one. Correlation 

constants are strong for countries. One may infer that the active case scores of Germany, Canada, Israel, and China 

are strongly correlated with each other. 

Table 2: Correlation matrix. 

 China Germany Canada Israel 

China 1 .991** .987** .998** 

Germany  1 .957** .994** 

Canada   1 .980** 

Israel    1 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Fig. (1) illustrates the hierarchy of data through linear paths.  

 

Figure 1: Hierarchical cluster of data. 
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According to Fig. (1), there are three main clusters in the data. One is for Germany, Israel, and Canada, and the 

other is for China. The third relationship is the Israel-China relationship. 

Kaiser-Mayer Olkin (KMO)-Bartlett Test expresses the distribution of the data set. This test, used under factor 

analysis, explains the suitability of the data for analysis. The test score is evaluated between 0 and 1. As this score 

approaches 1, the normal distribution of the data can be mentioned more clearly. A score above 0.5 is generally 

expected for the observation of the normal distribution of the data. The significance in the table is desired to be 

less than 0.05. 

Table 3: KMO and Bartlett's test. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .668 

Bartlett's Test of Sphericity 

Approx. Chi-Square 1194.187 

df 6 

Sig. .000 

 

According to Table 3, active case data of the countries have a normal distribution. 

2.2. Bézier Curve Modeling 

This section discusses the curve model of the dataset. The prototype of the prediction of COVID-19 active cases 

is modeled using the Bézier curve. The model, proposed by the French engineer Pierre Bézier [26] in the early 1970s, 

has found its place in many applications, from surface design to curve fitting, from graphic modeling to image 

processing. Fig. (2) denotes a few types of curves. 

 

Figure 2: Bézier samples. 

The segmented structure [27] with parametric curve behavior is mobile, flexible, and adaptable with control 

points. In each segment, the intermediate points of the curve, which include the starting and ending points, are free. 

Intermediate points are usually not selected on the curve. Traditionally, intermediate points are determined by 

methods such as median, least squares, etc. This paper`s intermediate points are calculated by the average of the 

data for every segment. The curve, which is parameterized between 0 and 1, has excellent flexibility with control 

points. Since each segment of the curve is connected, the structure is piecewise continuous. Moreover, the starting 

and ending points of successive segments make the structure a class C0 geometric structure [28]. That is, the ending 

point of the previous segment is the same as the starting point of the following segment. 

The differential geometrical curve can be presented by the binomial expansion (𝑥 + 𝑦)𝑛 = ∑ (
𝑛
𝑘

) 𝑥𝑘𝑛
𝑘=0 𝑦𝑛−𝑘 and 

the Bernstein polynomial 𝐵(𝑢) = ∑ (
𝑛
𝑘

) (1 − 𝑢)𝑛−𝑘𝑛
𝑘=0 𝑢𝑘. Provided that Pk are checkpoints and parameter u from 

0≤u≤1, the n-degree general Bézier model is: 

  𝔅(𝑢) = ∑ (
𝑛
𝑘

) (1 − 𝑢)𝑛−𝑘𝑛
𝑘=0 𝑢𝑘𝑃𝑘. (1) 

The difference between the number of control points of a curve and its degree is 1. A quadratic curve has three 

control points, and a cubic has four control points. An n-degree curve has n+1 points. The Bézier is invariant at the 

affine frame [29]. From eq. (1), one may see that 𝔅(0) = 𝔅(1) = 0. In this work, the prediction models for the number 
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of active cases are governed by the cubic Bézier curve. Provided that free parameter u∈ [0,1] and Pk, k=0,1,2,3, are 

the checkpoints, the cubic prototype and its matrix form are: 

 𝔅(𝑢) = ∑
𝑛!

𝑘!(𝑛−𝑘)!
𝑢𝑘(1 − 𝑢)𝑛−𝑘𝑃𝑘

𝑛
𝑘=0  (2) 

 𝔅(𝑢) = (𝑢3  𝑢2  𝑢  1)1𝑥4. (

−1    3  − 3   1
   3 − 6      3    0
−3     3       0    0
   1     0       0    0

) .4𝑥4 (

𝑃0

𝑃1

𝑃2

𝑃3

)

4𝑥1

 (3) 

The third-degree curve [30, 31] is quite successful in modeling problems related to dynamic systems. In each 

segment of the cubic Bézier curve, the first and fourth points belong to the curve, while the second and third points 

are free. While the curve gets its flexibility and adaptability from its intermediate points, the starting and ending 

points also provide piecewise continuity to the structure. In this way, the structure offers both excellent estimation 

(modeling) opportunity by exhibiting fragmentary behavior and enables the general observation of the problem by 

acting as a whole. In this subsection, basic geometric invariants are given to exhibit the behavior of the curve. The 

theorem exhibits the first three degrees of derivatives of Bézier. 

Theorem: The 𝔅(u) Bézier curve derivatives are: 

 

𝔅′(𝑢) = 𝑛 ∑ 𝐵𝑛−1,𝑘
𝑛−1
𝑘=0 (𝑢)𝔇1𝑃𝑘

𝔅″(𝑢) = 𝑛(𝑛 − 1) ∑ 𝐵𝑛−2,𝑘
𝑛−2
𝑘=0 (𝑢)𝔇2𝑃𝑘

𝔅‴(𝑢) = 𝑛(𝑛 − 1)(𝑛 − 2) ∑ 𝐵𝑛−3,𝑘
𝑛−3
𝑘=0 (𝑢)𝔇3𝑃𝑘

 (4) 

in where the Bernstein polynomial is Bn,k, and 𝔇0 = 𝑃1 − 𝑃0,  𝔇1 = 𝑃2 − 𝑃1,  𝔇2 = 𝑃3 − 𝑃2, … ,  𝔇𝑘 = 𝑃𝑘+1 − 𝑃𝑘 [32]. 

One can realize that the r order derivatives from eq. (5) and (6) with u=0 and u=1 are: 

  𝔅𝑟(𝑢)|𝑢=0 =
𝑛!

(𝑛−𝑟)!
∑ (−1)𝑟−𝑘 (

𝑟
𝑘

)𝑟
𝑘=0 𝑃𝑘 (5) 

   𝔅𝑟(𝑢)|𝑢=1 =
𝑛!

(𝑛−𝑟)!
∑ (−1)𝑘 (

𝑟
𝑘

)𝑟
𝑘=0 𝑃𝑛−𝑘. (6) 

According to eq. (5-6), the initial and terminal checkpoints are tangent to the curve. In this last subsection, the 

particular geometric invariants from the Frenet-Serret frame are handled. The mentioned provides a generic insight 

into the behaviors of the curve. The Serret-Frenet frame contains the unit vectors tangent, normal, and binormal unit 

vectors (T, N, B), the curvature (κ), and the torsion (τ) functions. 

Suppose that α is a unit speed, α from [0,1] to ℝn, and u is a free parameter between [0,1]. One knows that when 

a curve is known to have unit speed, then ‖α′(𝑢)‖ = 1 for the norm ‖… ‖. For the Frenet frame, the tangent unit 

vector 𝐓(𝑢) = α′(𝑢). With the rushing, one obtains 𝐓′(𝑢) = α′′(𝑢), where curvature κ is denoted by ‖𝐓′(𝑢)‖ norm for 

each u ∈ [0,1]. The curvature function κ(𝑢) is a real function for the α curve. It denotes the deviation of the tangent. 

For the κ(𝑢) > 0, the normal unit vector field N is formulated by 𝐍(𝑢) =
𝐓′(𝑢)

‖𝐓′(𝑢)‖
=

𝐓′(𝑢)

κ(u)
. The binormal vector of the α 

curve is denoted by 𝐁(𝑢) = 𝐓(𝑢) x 𝐍(𝑢). The curvature is showed by 𝜅(𝑢) =
‖𝔅′(𝑢) x 𝔅′′(𝑢)‖

‖𝔅′(𝑢)‖3  and the τ scalar torsion 

function of the α curve is denoted by τ(𝑢) = 𝐁′(𝑢). 𝐍(𝑢). The following lemma expresses the geometric positions of 

the three vectors. 

Lemma: Suppose that α is a unit speed curve and curvature κ > 0 on ℝ. The (T, N, B) vectors, which constitute the 

Frenet frame for the curve, on the α curve are perpendicular to each other for all space points. 

2.3. Bézier Curves and Rationale for Epidemiological Modeling 

Why Bézier curve estimation model? With a wide range of applications and a fresh approach to the number of 

active cases, Bézier is particularly practical and innovative compared to other models. Table 4 provides a brief 

evaluation of other estimation methods and the proposed curved approach. The table allows the reader to compare 

the models. 
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Table 4: Comparison to the other estimation approaches. 

Model 
Data  

Requirement 
Assumption 

Computational  

Cost 

Sensitivity  

to Noise 
Explainability 

Suitability for Rapid  

Pandemic Monitoring 

ARIMA Medium Linear time-series structure Medium High Medium Moderate 

Nonlinear 

Regression 
Low–Medium Fixed functional form Low Medium High Low–Moderate 

SIR/SIRD Low–Medium 
Epidemic parameters (β, γ, δ) 

assumed constant 
Medium High Medium Moderate 

Deep Learning Very high None, but opaque Very high Very high Very low Variable 

Proposal Low None (purely geometric) Very low 

Low (smooth  

C0 class  

reduce noise) 

High  

(deterministic  

geometry) 

Excellent 

 

The reader can observe the estimation model, data requirement of the model, assumption technique, 

computational cost, sensitivity to noise, explainability of the model, and suitability for rapid pandemic monitoring 

of the model in Table 4. 

Bézier curves constitute a fundamental class of parametric curves widely used in geometric modeling, computer-

aided design, and data approximation due to their mathematical simplicity, numerical stability, and strong 

geometric interpretability. In this study, Bézier curves are employed as a functional data analysis tool to model the 

temporal evolution of COVID-19 active case numbers with high precision.  

The control points play a central role in shaping the curve. Rather than interpolating all data points, the Bézier 

curve approximates the data by adjusting the position of its control points, which allows smooth global control of 

the curve’s behavior. A key geometric property is the convex hull property: the entire curve lies within the convex 

hull of its control points. This ensures numerical stability and prevents unrealistic oscillations, which is particularly 

important when modeling epidemiological data that must preserve monotonicity and boundedness over time. 

Continuity properties are essential when modeling time-dependent phenomena. Bézier curves support different 

continuity classes depending on how curve segments are connected. In this study, a piecewise C⁰-continuous 

segmented structure is employed, meaning that curve segments join without breaks while allowing local flexibility. 

Higher-order continuity (C¹ or C²), which enforces smooth first or second derivatives, can also be imposed if 

required, but C⁰ continuity is sufficient and advantageous for capturing abrupt changes in epidemic dynamics 

caused by interventions, reporting delays, or policy shifts. 

The parametric nature of Bézier curves enables a clear separation between time (parameter t) and state variables 

(active case numbers). This parametric representation allows efficient approximation of nonlinear temporal trends 

without assuming an underlying stochastic process or epidemiological compartmental structure. Unlike regression-

based or differential equation–based models, Bézier curves do not require prior assumptions about transmission 

rates, recovery parameters, or population mixing, making them particularly suitable for data-driven modeling under 

uncertainty. 

Bernstein polynomials form the numerical backbone of Bézier curves and contribute significantly to their 

robustness. These polynomials are non-negative over the interval [0,1] and sum to unity, which ensures numerical 

stability and smooth approximation behavior. Their well-conditioned nature reduces sensitivity to noise and 

rounding errors, a crucial advantage when dealing with real-world pandemic data that may contain inconsistencies 

or reporting artifacts. 

Overall, the mathematical formulation and geometric properties of Bézier curves provide a stable, flexible, and 

interpretable framework for modeling epidemic trajectories. Their ability to approximate complex temporal 

patterns using a small number of parameters, combined with their continuity control and numerical stability, makes 

them a powerful alternative to traditional epidemiological and statistical models in pandemic data analysis. 
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2.4. Implementation Overview 

To ensure transparency and reproducibility, a simplified implementation pipeline is outlined. The procedure 

involves: (1) segmentation of the time series into fixed 12-hour windows; (2) construction of cubic Bézier segments 

using reported active case values as control points; (3) computation of parametric curve trajectories for each 

segment; (4) evaluation of model performance using mean absolute error per segment; and (5) optional adaptive 

re-segmentation for segments exhibiting maximal deviation. This overview is intended to facilitate. 

3. Results and Discussion 

T, N, B vectors representing the tangent, normal, and binormal vectors along a space curve provides a powerful 

geometric tool for describing the local behavior of trajectories and surfaces. Its associated parameters—curvature 

(𝜅) and torsion (𝜏)—quantify how a curve bends and twists in three-dimensional space. Beyond pure geometry, these 

quantities have become essential descriptors in contemporary modeling and data analysis across multiple 

disciplines. 

In engineering and robotics, the Frenet frame is widely used in trajectory planning and motion control. When 

designing the path of an autonomous vehicle, drone, or robotic arm, the curvature determines how sharply the 

system must turn, while the torsion governs how the path deviates from a plane. By optimizing these quantities, 

engineers can minimize energy consumption, ensure mechanical stability, and avoid abrupt changes in motion that 

could damage hardware or reduce accuracy. 

In computer graphics and animation, curvature and torsion form the mathematical backbone of realistic motion 

and shape generation. Bézier and spline curves, often utilized for surface modeling, rely on local curvature control 

to achieve smooth transitions between segments. The Frenet frame allows the precise definition of surface normals 

and shading directions, which is essential for realistic rendering and dynamic deformation of 3D objects. 

In biomechanics and medical imaging, the Frenet–Serret apparatus is used to model the geometry of biological 

structures such as blood vessels, DNA strands, or spinal curvature. The curvature indicates how sharply a structure 

bends, while torsion measures its spatial twisting, which are critical parameters in understanding flow dynamics, 

structural stress, and morphological disorders. This approach aids in diagnostic modeling and in the design of bio-

inspired materials or prosthetics. 

In atmospheric and environmental modeling, the Frenet frame can describe the geometric behavior of 

streamlines in wind flow, ocean currents, or pollutant dispersion paths. The curvature corresponds to the rate of 

directional change of a flow trajectory, while torsion captures vertical deviations. Analyzing these parameters 

supports the understanding of turbulence, diffusion mechanisms, and energy transfer processes in the atmosphere 

or hydrosphere. 

Finally, in data science and complex systems modeling, geometric representations based on the Frenet frame 

have emerged as a means of describing nonlinear trajectories in multidimensional spaces. For instance, in epidemic 

modeling, financial forecasting, or solar wind dynamics, curvature and torsion can characterize the “geometric 

behavior” of a time series curve, identifying regions of rapid change (high curvature) or structural transformation 

(high torsion). Thus, the Frenet frame provides a bridge between geometric abstraction and dynamic system 

interpretation. 

Now, one can observe the results of the discussion. In the results, segmentation of the models is managed using 

12-hour frames. A new segment is created every 12 hours to establish the curve model. 

Table 5 displays the actual values, estimated values, and the average error of these values for some random 

segments for Germany. In this table, the parameter u indicates which parameter is used to obtain the predicted 

score. The word "index" here indicates the selected day of the relevant segment. For example, 2(5) means the 5th 

day of the 2nd segment. 

As can be seen from Table 5, regardless of which segment and index are randomly selected, the estimated score 

is obtained with minimum error. 
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For Germany: The results of the Bézier curve model for active case data from Germany are significant and 

satisfactory. The average error of this model is 0.112951%. The maximum error is also observed in the model at 

1.5532%. The results obtained by a classical differential geometric approach without normalizing the case numbers 

are comparable to modern computer-aided applications. Fig. (3) shows active cases, Bézier model, and their average 

error. The average error specified by the formula Error = 100. |
active case−estimated case

active case
|. 

Table 5: Particular segments, values with curve parameter, and average errors for Germany. 

Segment (Index) Actual Value Estimated Value u Average Error (%) 

1(4) 16 16.003 0.999 0.018731 

2(5) 130 129.973 0.875 0.021042 

3(11) 12327 12340.43 0.762 0.108931 

4(3) 22364 22348.37 0.888 0.069876 

5(1) 66885 66800.33 0.001 0.126591 

6(2) 125452 125467.1 0.916 0.012012 

6(8) 141397 141391.5 0.244 0.003858 

7(6) 157770 257757.5 0.001 0.007949 

 

 
Figure 3: Germany model and its error. 

Table 6 displays the actual values, estimated values, and the average error of these values for some random 

segments for Canada. In this table, the parameter u indicates which parameter is used to obtain the predicted score. 

Table 6: Particular segments, values with curve parameter, and average errors for Canada. 

Segment (Index) Actual Value Estimated Value u Average Error (%) 

1(2) 8 8.003497 0.999 0.043706 

2(3) 15 15.02 0.946 0.133339 

3(5) 142 141.7095 0.893 0.204577 

4(4) 1470 1469.308 0.916 0.047061 

4(10) 5655 5651.359 0.178 0.064383 

5(7) 15512 15510.5 0.426 0.009641 

6(9) 33383 33388.74 0.243 0.017208 

7(5) 46895 46882.76 0.145 0.000928 
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For Canada: The results of the curve model for active case data from Canada are substantial and suitable. The 

average error of this model is 0.08685%. The maximum error is also observed in the model at 1.1837%. The results 

found without normalizing the case numbers are comparable to modern computer-aided applications. Fig. (4) 

displays active cases, curve model, and their average error.  

 

Figure 4: Canada model and its error. 

Table 7 displays the actual values, estimated values, and the average error of these values for some random 

segments for Israel. In this table, the parameter u indicates which parameter is used to obtain the predicted score. 

Table 7: Particular segments, values with curve parameter, and average errors for Israel. 

Segment (Index) Actual Value Estimated Value u Average Error (%) 

1(3) 1 1.000999 0.999 0.099999 

2(2) 3 2.994196 0.972 0.193450 

3(6) 143 143.1946 0.772 0.136073 

4(9) 3035 3033.751 0.308 0.041153 

5(4) 6857 6854.781 0.701 0.032354 

5(11) 9968 9966.79 0.062 0.012138 

6(7) 12758 12758.14 0.338 0.001073 

7(4) 15058 15058.26 0.269 0.001711 

 

For Israel: The results of the curve model for active case data from Israel are substantial and suitable. The 

average error of this model is 0.11283%. The maximum error is also observed in the model at 1.8232%. The results 

found without normalizing the case numbers are comparable to modern computer-aided applications. Fig. (5) 

displays active cases, curve model, and their average error.  

For China: All results can be compared with China. This country’s results of the curve model for active case data 

are important and acceptable. The average error of this model is 0.82209%. The maximum error is also observed in 

the model at 1.5532%. The results obtained by a classical differential geometric approach without normalizing the 

case numbers are comparable to modern computer-aided applications. Fig. (6) shows active cases, Bézier model, 

and their average error.  
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Figure 5: Israel model and its error. 

 

Figure 6: China model and its error. 

One can immediately realize that the model for China's active cases has a slightly higher error compared to the 

other countries mentioned. At this point, the adaptable, adjustable segmented structure of the Bézier curve comes 

into play. In the data segment with the highest error, the segmentation is reduced from 12 hours to 6 hours, and 

the model is remodeled. First, the second 12 hours are divided into two 6-hour segments. Fig. (7) illustrates the 

average error for this discussion. 

 

Figure 7: Average error for China model after six hours piece wise decomposition for second segment. 
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It should be noted that with this intervention, the average error immediately decreased from 0.82209% to 

0.24237% and maximum error from 9.7702% to 3.6968%. 

After this intervention, if the first 12 hours of data are divided into two segments (6 hours each), the result in Fig. 

(8) is displayed. 

 

Figure 8: Average error for China model after six hours piece wise decomposition for first and second segment. 

One can note that with this intervention, the average error immediately decreased from 0.242365% to 0.14178% 

and maximum error from 3.6968% to 1.8613%. 

Table 8 displays the actual values, estimated values, and the average error of these values for some random 

segments for China. In this table, the parameter u indicates which parameter is used to obtain the predicted score. 

In this piecewise approach, one can see six hours segmentation for the estimation model. 

Table 8: Particular segments, values with curve parameter, and average errors for China. 

Segment (Index) Actual Value Estimated Value u Average Error (%) 

1(1) 57990 57989.56 0.999 0.000755 

2(2) 54418 54419.58 0.354 0.002896 

3(3) 42262 42263.95 0.511 0.004624 

3(4) 41297 41295.51 0.697 0.003597 

4(4) 39433 39433.98 0.062 0.002490 

4(5) 40947 40948.15 0.560 0.002813 

5(5) 59168 59182.06 0.833 0.023764 

6(6) 294801 294821.5 0.654 0.006960 

7(7) 940105 939881.7 0.416 0.023749 

8(11) 1663676 1663954 0.037 0.016704 

9(2) 1735696 1735731 0.844 0.002032 

 

Real-time estimation of epidemiological indicators is essential for early intervention, resource allocation, and 

public health decision-making during pandemics. The proposed Bézier curve framework is particularly suited for 

real-time monitoring because of its low computational cost, deterministic structure, and independence from 

complex parameter calibration. The segmented C0-continuous formulation allows health authorities to update 
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estimates as new data become available, even in irregular reporting conditions. Since the model does not rely on 

stochastic assumptions, it can rapidly produce stable projections that support decisions such as adjusting 

containment measures, predicting hospital demand, or planning logistics before critical thresholds are reached. 

3.1. Limitation and Future Works 

Although the Bezier-based prototype demonstrates extremely low error rates, several limitations should be 

acknowledged. First, the model is sensitive to abrupt fluctuations or reporting inconsistencies, as geometric 

continuity may be affected by noise in input data. While segmentation can mitigate this issue, overly frequent 

segment breaks may reduce interpretability. Second, the current formulation is tailored to pandemics with relatively 

smooth temporal progression; diseases with multi-wave or highly erratic propagation patterns may require 

additional constraints or higher-order continuity conditions (e.g., C¹ or C²). Third, the approach assumes that case 

reporting follows a monotonic temporal structure, which may not hold for all epidemiological systems. Future work 

may focus on integrating adaptive smoothing, noise-aware preprocessing, or curvature-based anomaly detection 

to improve robustness in heterogeneous data environments. 

4. Conclusions 

The COVID-19 pandemic has had profound and lasting effects on the world. It has long-term effects on health, 

the economy, and society. Countries are implementing various strategies to limit the effects of the pandemic. In this 

sense, each country's approach varies depending on its health infrastructure, resources, and social structure. On 

the other hand, the pandemic also provides important lessons on global cooperation, strengthening health systems, 

and preparing for future pandemics. This study introduces a Bézier curve–based geometric prototype capable of 

representing the temporal evolution of pandemic dynamics with remarkable precision. The model’s parametric 

structure and piecewise continuous C0 segmentation enable a flexible yet stable estimation of active COVID-19 

cases. Its geometric continuity allows the curve to capture the intrinsic trajectory of epidemic propagation without 

dependence on stochastic or noise-prone datasets. Applications to Germany, Canada, and Israel demonstrated a 

mean absolute error as low as 0.087%, confirming the robustness and generalizability of the geometric formulation. 

The simplicity of the Bézier parametrization, coupled with its computational efficiency, provides a valuable 

foundation for constructing predictive manifolds and curvature-based analyses in future epidemiological modeling. 

Consequently, the presented framework offers a mathematically consistent, cost-free, and adaptable approach for 

real-time epidemic monitoring and strategic decision-making. 
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